Loading…
An Alternative Multi-Physics-Based Methodology for Strongly Coupled Electro-Magneto-Mechanical Problems
The analysis of complex systems tends to be approached through a separation and a simplification of the main macro phenomena and, thus, addressed through dedicated techniques, tools, and algorithms. A smart and interesting possibility, instead, is represented by the so-called model-based design anal...
Saved in:
Published in: | Algorithms 2023-06, Vol.16 (6), p.306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The analysis of complex systems tends to be approached through a separation and a simplification of the main macro phenomena and, thus, addressed through dedicated techniques, tools, and algorithms. A smart and interesting possibility, instead, is represented by the so-called model-based design analysis, which allows one to interface phenomena coming from interactions of different physical natures. This paper aims to propose a multi-physics Matlab/Simulink®-based architecture that allows one to integrate general and strongly non-linear coupling phenomena, taking efforts from two novel implemented bi-directional co-simulation routines based on Spice® and ESRF Radia® engines. Emphasis is dedicated to the discussion and description of the co-simulation algorithms and processes characteristic of these routines, which allow the analog electronic and the magneto dynamic domain’s integration under a single simulation environment. To highlight the reliability of the multi-domain architecture and to validate the reported co-simulation results, a comparison with the experimental measures obtained on an innovative MEMS electromagnetic actuator are proposed. |
---|---|
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a16060306 |