Loading…

A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study

The need for sensors that measure the acetone content of exhaled breath for diabetes severity has recently increased. Clinical researchers have reported less than 0.8 ppm acetone concentration in the exhaled breath of an average individual, while that for a diabetic patient is higher than 1.8 ppm. T...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2022-09, Vol.12 (9), p.734
Main Authors: Prasanth, A., Getachew, Selamawit, Shewa, Tseganesh, Velumani, M., Meher, S. R., Alex, Z. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563
cites cdi_FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563
container_end_page
container_issue 9
container_start_page 734
container_title Biosensors (Basel)
container_volume 12
creator Prasanth, A.
Getachew, Selamawit
Shewa, Tseganesh
Velumani, M.
Meher, S. R.
Alex, Z. C.
description The need for sensors that measure the acetone content of exhaled breath for diabetes severity has recently increased. Clinical researchers have reported less than 0.8 ppm acetone concentration in the exhaled breath of an average individual, while that for a diabetic patient is higher than 1.8 ppm. This work reports the development of two sets of evanescent wave-based fiber optic sensor coated with SnO2 thin film and bilayer of SnO2/MoS2 to detect different acetone concentrations (0–250 ppm). In each set, we have studied the effect of clad thickness (chemical etch time 5min, 10 min, 15 min, 25 min, 40 min, and complete clad removal) to optimize the clad thickness for a better response. In Set 1, SnO2 thin film was used as the sensing layer, while in Set 2 a bilayer of SnO2 thin film/ MoS2 was used. Enhanced sensor response of ~23.5% is observed in the Set 2 probe with a response and recovery time of ~14 s/~17 s. A SnO2/MoS2-coated sensor prototype is developed using LEDs of different wavelength and intensity detector; its potential to detect different concentrations of acetone is tested. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Ultraviolet (UV) Spectroscopy, and Ellipsometry were used to study the structural, morphological and optical properties of the sensing layers. The present study indicates that the SnO2/MoS2-coated sensor has the potential to create a handheld sensor system for monitoring diabetes.
doi_str_mv 10.3390/bios12090734
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_782a19d76fa341768d3f90bb2f815d2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_782a19d76fa341768d3f90bb2f815d2a</doaj_id><sourcerecordid>2716501534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563</originalsourceid><addsrcrecordid>eNpdkk9vFCEYhydGE5vamx-AxIsHx_JvYLiYrOtWm9TsYTUeCQMvddbZYQVm4978EH5CP4mM25hWEgKBh4eXX6iq5wS_Zkzhy64PiVCssGT8UXVGsVS1YJI_vjd_Wl2ktMWlSS4Vk2fVtwV62w_mCBFtxjW9_Bg2tF4Gk8Gh1cGMkCyMGX0xB0BXfVew9T73Fm1gTCEiX_rCQg4joHeQweY-jL9__lqMaPVjD7HfldNmQJs8ueOz6ok3Q4KLu_G8-ny1-rT8UN-s318vFze15U2Ta6sYWOtN23HRCiUEa6kE6x3DQhjnOuxYYaxtsbTESOLBMAXUtox51wh2Xl2fvC6Yrd6XIkw86mB6_XchxFttYnnEAFq21BDlpPCGcSJF65hXuOuob0njqCmuNyfXfup24OYwohkeSB_ujP1XfRsOWnElOFdF8PJOEMP3CVLWu75kOgwl2zAlTeV8LVFyRl_8h27DFMcS1UyJBpOG8UK9OlE2hpQi-H_FEKznn6Dv_wT2B8NMp9Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716501534</pqid></control><display><type>article</type><title>A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Prasanth, A. ; Getachew, Selamawit ; Shewa, Tseganesh ; Velumani, M. ; Meher, S. R. ; Alex, Z. C.</creator><creatorcontrib>Prasanth, A. ; Getachew, Selamawit ; Shewa, Tseganesh ; Velumani, M. ; Meher, S. R. ; Alex, Z. C.</creatorcontrib><description>The need for sensors that measure the acetone content of exhaled breath for diabetes severity has recently increased. Clinical researchers have reported less than 0.8 ppm acetone concentration in the exhaled breath of an average individual, while that for a diabetic patient is higher than 1.8 ppm. This work reports the development of two sets of evanescent wave-based fiber optic sensor coated with SnO2 thin film and bilayer of SnO2/MoS2 to detect different acetone concentrations (0–250 ppm). In each set, we have studied the effect of clad thickness (chemical etch time 5min, 10 min, 15 min, 25 min, 40 min, and complete clad removal) to optimize the clad thickness for a better response. In Set 1, SnO2 thin film was used as the sensing layer, while in Set 2 a bilayer of SnO2 thin film/ MoS2 was used. Enhanced sensor response of ~23.5% is observed in the Set 2 probe with a response and recovery time of ~14 s/~17 s. A SnO2/MoS2-coated sensor prototype is developed using LEDs of different wavelength and intensity detector; its potential to detect different concentrations of acetone is tested. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Ultraviolet (UV) Spectroscopy, and Ellipsometry were used to study the structural, morphological and optical properties of the sensing layers. The present study indicates that the SnO2/MoS2-coated sensor has the potential to create a handheld sensor system for monitoring diabetes.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios12090734</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetone ; Bilayers ; Coatings ; Diabetes ; Diabetes mellitus ; Ellipsometry ; Etching ; evanescent wave ; Evanescent waves ; fiber optic sensor ; Fiber optics ; Glass substrates ; Insulin ; Medical diagnosis ; Metabolism ; Molybdenum disulfide ; MoS2 ; Nanoparticles ; Optical properties ; Recovery time ; Scanning electron microscopy ; Sensors ; SnO2 ; Spectroscopy ; Thickness ; Thin films ; Tin dioxide ; X-ray diffraction ; Zinc oxides</subject><ispartof>Biosensors (Basel), 2022-09, Vol.12 (9), p.734</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563</citedby><cites>FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716501534/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716501534?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Prasanth, A.</creatorcontrib><creatorcontrib>Getachew, Selamawit</creatorcontrib><creatorcontrib>Shewa, Tseganesh</creatorcontrib><creatorcontrib>Velumani, M.</creatorcontrib><creatorcontrib>Meher, S. R.</creatorcontrib><creatorcontrib>Alex, Z. C.</creatorcontrib><title>A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study</title><title>Biosensors (Basel)</title><description>The need for sensors that measure the acetone content of exhaled breath for diabetes severity has recently increased. Clinical researchers have reported less than 0.8 ppm acetone concentration in the exhaled breath of an average individual, while that for a diabetic patient is higher than 1.8 ppm. This work reports the development of two sets of evanescent wave-based fiber optic sensor coated with SnO2 thin film and bilayer of SnO2/MoS2 to detect different acetone concentrations (0–250 ppm). In each set, we have studied the effect of clad thickness (chemical etch time 5min, 10 min, 15 min, 25 min, 40 min, and complete clad removal) to optimize the clad thickness for a better response. In Set 1, SnO2 thin film was used as the sensing layer, while in Set 2 a bilayer of SnO2 thin film/ MoS2 was used. Enhanced sensor response of ~23.5% is observed in the Set 2 probe with a response and recovery time of ~14 s/~17 s. A SnO2/MoS2-coated sensor prototype is developed using LEDs of different wavelength and intensity detector; its potential to detect different concentrations of acetone is tested. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Ultraviolet (UV) Spectroscopy, and Ellipsometry were used to study the structural, morphological and optical properties of the sensing layers. The present study indicates that the SnO2/MoS2-coated sensor has the potential to create a handheld sensor system for monitoring diabetes.</description><subject>Acetone</subject><subject>Bilayers</subject><subject>Coatings</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Ellipsometry</subject><subject>Etching</subject><subject>evanescent wave</subject><subject>Evanescent waves</subject><subject>fiber optic sensor</subject><subject>Fiber optics</subject><subject>Glass substrates</subject><subject>Insulin</subject><subject>Medical diagnosis</subject><subject>Metabolism</subject><subject>Molybdenum disulfide</subject><subject>MoS2</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Recovery time</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>SnO2</subject><subject>Spectroscopy</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>X-ray diffraction</subject><subject>Zinc oxides</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9vFCEYhydGE5vamx-AxIsHx_JvYLiYrOtWm9TsYTUeCQMvddbZYQVm4978EH5CP4mM25hWEgKBh4eXX6iq5wS_Zkzhy64PiVCssGT8UXVGsVS1YJI_vjd_Wl2ktMWlSS4Vk2fVtwV62w_mCBFtxjW9_Bg2tF4Gk8Gh1cGMkCyMGX0xB0BXfVew9T73Fm1gTCEiX_rCQg4joHeQweY-jL9__lqMaPVjD7HfldNmQJs8ueOz6ok3Q4KLu_G8-ny1-rT8UN-s318vFze15U2Ta6sYWOtN23HRCiUEa6kE6x3DQhjnOuxYYaxtsbTESOLBMAXUtox51wh2Xl2fvC6Yrd6XIkw86mB6_XchxFttYnnEAFq21BDlpPCGcSJF65hXuOuob0njqCmuNyfXfup24OYwohkeSB_ujP1XfRsOWnElOFdF8PJOEMP3CVLWu75kOgwl2zAlTeV8LVFyRl_8h27DFMcS1UyJBpOG8UK9OlE2hpQi-H_FEKznn6Dv_wT2B8NMp9Y</recordid><startdate>20220907</startdate><enddate>20220907</enddate><creator>Prasanth, A.</creator><creator>Getachew, Selamawit</creator><creator>Shewa, Tseganesh</creator><creator>Velumani, M.</creator><creator>Meher, S. R.</creator><creator>Alex, Z. C.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220907</creationdate><title>A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study</title><author>Prasanth, A. ; Getachew, Selamawit ; Shewa, Tseganesh ; Velumani, M. ; Meher, S. R. ; Alex, Z. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetone</topic><topic>Bilayers</topic><topic>Coatings</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Ellipsometry</topic><topic>Etching</topic><topic>evanescent wave</topic><topic>Evanescent waves</topic><topic>fiber optic sensor</topic><topic>Fiber optics</topic><topic>Glass substrates</topic><topic>Insulin</topic><topic>Medical diagnosis</topic><topic>Metabolism</topic><topic>Molybdenum disulfide</topic><topic>MoS2</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Recovery time</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>SnO2</topic><topic>Spectroscopy</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>X-ray diffraction</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanth, A.</creatorcontrib><creatorcontrib>Getachew, Selamawit</creatorcontrib><creatorcontrib>Shewa, Tseganesh</creatorcontrib><creatorcontrib>Velumani, M.</creatorcontrib><creatorcontrib>Meher, S. R.</creatorcontrib><creatorcontrib>Alex, Z. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanth, A.</au><au>Getachew, Selamawit</au><au>Shewa, Tseganesh</au><au>Velumani, M.</au><au>Meher, S. R.</au><au>Alex, Z. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study</atitle><jtitle>Biosensors (Basel)</jtitle><date>2022-09-07</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>734</spage><pages>734-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>The need for sensors that measure the acetone content of exhaled breath for diabetes severity has recently increased. Clinical researchers have reported less than 0.8 ppm acetone concentration in the exhaled breath of an average individual, while that for a diabetic patient is higher than 1.8 ppm. This work reports the development of two sets of evanescent wave-based fiber optic sensor coated with SnO2 thin film and bilayer of SnO2/MoS2 to detect different acetone concentrations (0–250 ppm). In each set, we have studied the effect of clad thickness (chemical etch time 5min, 10 min, 15 min, 25 min, 40 min, and complete clad removal) to optimize the clad thickness for a better response. In Set 1, SnO2 thin film was used as the sensing layer, while in Set 2 a bilayer of SnO2 thin film/ MoS2 was used. Enhanced sensor response of ~23.5% is observed in the Set 2 probe with a response and recovery time of ~14 s/~17 s. A SnO2/MoS2-coated sensor prototype is developed using LEDs of different wavelength and intensity detector; its potential to detect different concentrations of acetone is tested. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Ultraviolet (UV) Spectroscopy, and Ellipsometry were used to study the structural, morphological and optical properties of the sensing layers. The present study indicates that the SnO2/MoS2-coated sensor has the potential to create a handheld sensor system for monitoring diabetes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/bios12090734</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6374
ispartof Biosensors (Basel), 2022-09, Vol.12 (9), p.734
issn 2079-6374
2079-6374
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_782a19d76fa341768d3f90bb2f815d2a
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Acetone
Bilayers
Coatings
Diabetes
Diabetes mellitus
Ellipsometry
Etching
evanescent wave
Evanescent waves
fiber optic sensor
Fiber optics
Glass substrates
Insulin
Medical diagnosis
Metabolism
Molybdenum disulfide
MoS2
Nanoparticles
Optical properties
Recovery time
Scanning electron microscopy
Sensors
SnO2
Spectroscopy
Thickness
Thin films
Tin dioxide
X-ray diffraction
Zinc oxides
title A Bilayer SnO2/MoS2-Coated Evanescent Wave Fiber Optic Sensor for Acetone Detection—An Experimental Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bilayer%20SnO2/MoS2-Coated%20Evanescent%20Wave%20Fiber%20Optic%20Sensor%20for%20Acetone%20Detection%E2%80%94An%20Experimental%20Study&rft.jtitle=Biosensors%20(Basel)&rft.au=Prasanth,%20A.&rft.date=2022-09-07&rft.volume=12&rft.issue=9&rft.spage=734&rft.pages=734-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios12090734&rft_dat=%3Cproquest_doaj_%3E2716501534%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-c93eccfa8b46869663827ecfd3066addb0d3c93cc807c1a71fea39e2c833fd563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716501534&rft_id=info:pmid/&rfr_iscdi=true