Loading…
A Genetic Programming Approach to Reconfigure a Morphological Image Processing Architecture
Mathematical morphology supplies powerful tools for low-level image analysis. Many applications in computer vision require dedicated hardware for real-time execution. The design of morphological operators for a given application is not a trivial one. Genetic programming is a branch of evolutionary c...
Saved in:
Published in: | International journal of reconfigurable computing 2011-01, Vol.2011 (2011), p.1-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mathematical morphology supplies powerful tools for low-level image analysis. Many applications in computer vision require dedicated hardware for real-time execution. The design of morphological operators for a given application is not a trivial one. Genetic programming is a branch of evolutionary computing, and it is consolidating as a promising method for applications of digital image processing. The main objective of genetic programming is to discover how computers can learn to solve problems without being programmed for that. In this paper, the development of an original reconfigurable architecture using logical, arithmetic, and morphological instructions generated automatically by a genetic programming approach is presented. The developed architecture is based on FPGAs and has among the possible applications, automatic image filtering, pattern recognition and emulation of unknown filter. Binary, gray, and color image practical applications using the developed architecture are presented and the results are compared with similar techniques found in the literature. |
---|---|
ISSN: | 1687-7195 1687-7209 |
DOI: | 10.1155/2011/712494 |