Loading…

Noise-Aware Quantum Amplitude Estimation

In this article, based on some simple and reasonable assumptions, we derive a Gaussian noise model for quantum amplitude estimation. We provide results from quantum amplitude estimation run on various IBM superconducting quantum computers and on Quantinuum's H1 trapped-ion quantum computer to s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on quantum engineering 2024, Vol.5, p.1-23
Main Authors: Herbert, Steven, Williams, Ifan, Guichard, Roland, Ng, Darren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, based on some simple and reasonable assumptions, we derive a Gaussian noise model for quantum amplitude estimation. We provide results from quantum amplitude estimation run on various IBM superconducting quantum computers and on Quantinuum's H1 trapped-ion quantum computer to show that the proposed model is a good fit for real-world experimental data. We also show that the proposed Gaussian noise model can be easily composed with other noise models in order to capture effects that are not well described by Gaussian noise. We give a generalized procedure for how to embed this noise model into any quantum-phase-estimation-free quantum amplitude estimation algorithm, such that the amplitude estimation is "noise aware." We then provide experimental results from running an implementation of noise-aware quantum amplitude estimation using data from an IBM superconducting quantum computer, demonstrating that the addition of "noise awareness" serves as an effective means of quantum error mitigation.
ISSN:2689-1808
2689-1808
DOI:10.1109/TQE.2024.3476929