Loading…

Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy

Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavail...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8111
Main Authors: Ma, Xiaohu, Fischerauer, Alice, Haacke, Sebastian, Fischerauer, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883
container_end_page
container_issue 24
container_start_page 8111
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Ma, Xiaohu
Fischerauer, Alice
Haacke, Sebastian
Fischerauer, Gerhard
description Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.
doi_str_mv 10.3390/s24248111
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713</doaj_id><sourcerecordid>3149752479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</originalsourceid><addsrcrecordid>eNpNUbtOAzEQPCGQCIGCP7BERXHgx50fZQgBIgVRBGrLrxCHi33YpsjfcyEIUe3s7Gh2V1NVlwjeECLgbcYNbjhC6KgaoQHWHGN4_A-fVmc5byDEhBA-qj7uXXFp64MqPgYQV6CsHbhzocTgiwPTGMrQAB_Ac-ysD-9gqYLN4C3v8WRez8JaBeMsmHXOlOSN6sB82zu7Z8Gy35Mxm9jvzquTleqyu_it4-rtYfY6faoXL4_z6WRRG4S5qIXThmJtIMHYcmEIVQoLyDnFTcucghoL3RJhWzroiWkhbREiiulhTjkn42p-8LVRbWSf_FalnYzKyx8ipnepUvGmc5JxBrVFtnGKNkhYzRltqNLacMIYIoPX1cGrT_Hzy-UiN_ErheF8SVAjWIsbJgbV9UFlhldzcqu_rQjKfS7yLxfyDVn_fXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149752479</pqid></control><display><type>article</type><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</creator><creatorcontrib>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</creatorcontrib><description>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24248111</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; bentonite ; Composite materials ; electrical impedance spectroscopy (EIS) ; feature extraction ; feature importance ; Machine learning ; Methods ; Monitoring systems ; Neural networks ; principal component analysis (PCA) ; quartz sand ; Spectrum analysis ; Water</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.8111</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</cites><orcidid>0000-0003-2000-4730 ; 0000-0001-5771-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149752479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149752479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ma, Xiaohu</creatorcontrib><creatorcontrib>Fischerauer, Alice</creatorcontrib><creatorcontrib>Haacke, Sebastian</creatorcontrib><creatorcontrib>Fischerauer, Gerhard</creatorcontrib><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><title>Sensors (Basel, Switzerland)</title><description>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</description><subject>Algorithms</subject><subject>bentonite</subject><subject>Composite materials</subject><subject>electrical impedance spectroscopy (EIS)</subject><subject>feature extraction</subject><subject>feature importance</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>principal component analysis (PCA)</subject><subject>quartz sand</subject><subject>Spectrum analysis</subject><subject>Water</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUbtOAzEQPCGQCIGCP7BERXHgx50fZQgBIgVRBGrLrxCHi33YpsjfcyEIUe3s7Gh2V1NVlwjeECLgbcYNbjhC6KgaoQHWHGN4_A-fVmc5byDEhBA-qj7uXXFp64MqPgYQV6CsHbhzocTgiwPTGMrQAB_Ac-ysD-9gqYLN4C3v8WRez8JaBeMsmHXOlOSN6sB82zu7Z8Gy35Mxm9jvzquTleqyu_it4-rtYfY6faoXL4_z6WRRG4S5qIXThmJtIMHYcmEIVQoLyDnFTcucghoL3RJhWzroiWkhbREiiulhTjkn42p-8LVRbWSf_FalnYzKyx8ipnepUvGmc5JxBrVFtnGKNkhYzRltqNLacMIYIoPX1cGrT_Hzy-UiN_ErheF8SVAjWIsbJgbV9UFlhldzcqu_rQjKfS7yLxfyDVn_fXg</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Ma, Xiaohu</creator><creator>Fischerauer, Alice</creator><creator>Haacke, Sebastian</creator><creator>Fischerauer, Gerhard</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2000-4730</orcidid><orcidid>https://orcid.org/0000-0001-5771-2277</orcidid></search><sort><creationdate>20241219</creationdate><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><author>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>bentonite</topic><topic>Composite materials</topic><topic>electrical impedance spectroscopy (EIS)</topic><topic>feature extraction</topic><topic>feature importance</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>principal component analysis (PCA)</topic><topic>quartz sand</topic><topic>Spectrum analysis</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaohu</creatorcontrib><creatorcontrib>Fischerauer, Alice</creatorcontrib><creatorcontrib>Haacke, Sebastian</creatorcontrib><creatorcontrib>Fischerauer, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaohu</au><au>Fischerauer, Alice</au><au>Haacke, Sebastian</au><au>Fischerauer, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2024-12-19</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>8111</spage><pages>8111-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s24248111</doi><orcidid>https://orcid.org/0000-0003-2000-4730</orcidid><orcidid>https://orcid.org/0000-0001-5771-2277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.8111
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
bentonite
Composite materials
electrical impedance spectroscopy (EIS)
feature extraction
feature importance
Machine learning
Methods
Monitoring systems
Neural networks
principal component analysis (PCA)
quartz sand
Spectrum analysis
Water
title Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20Bentonite%20Content%20in%20Molding%20Sands%20Using%20AI-Enhanced%20Electrical%20Impedance%20Spectroscopy&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ma,%20Xiaohu&rft.date=2024-12-19&rft.volume=24&rft.issue=24&rft.spage=8111&rft.pages=8111-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24248111&rft_dat=%3Cproquest_doaj_%3E3149752479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149752479&rft_id=info:pmid/&rfr_iscdi=true