Loading…
Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy
Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavail...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8111 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883 |
container_end_page | |
container_issue | 24 |
container_start_page | 8111 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Ma, Xiaohu Fischerauer, Alice Haacke, Sebastian Fischerauer, Gerhard |
description | Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling. |
doi_str_mv | 10.3390/s24248111 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713</doaj_id><sourcerecordid>3149752479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</originalsourceid><addsrcrecordid>eNpNUbtOAzEQPCGQCIGCP7BERXHgx50fZQgBIgVRBGrLrxCHi33YpsjfcyEIUe3s7Gh2V1NVlwjeECLgbcYNbjhC6KgaoQHWHGN4_A-fVmc5byDEhBA-qj7uXXFp64MqPgYQV6CsHbhzocTgiwPTGMrQAB_Ac-ysD-9gqYLN4C3v8WRez8JaBeMsmHXOlOSN6sB82zu7Z8Gy35Mxm9jvzquTleqyu_it4-rtYfY6faoXL4_z6WRRG4S5qIXThmJtIMHYcmEIVQoLyDnFTcucghoL3RJhWzroiWkhbREiiulhTjkn42p-8LVRbWSf_FalnYzKyx8ipnepUvGmc5JxBrVFtnGKNkhYzRltqNLacMIYIoPX1cGrT_Hzy-UiN_ErheF8SVAjWIsbJgbV9UFlhldzcqu_rQjKfS7yLxfyDVn_fXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149752479</pqid></control><display><type>article</type><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</creator><creatorcontrib>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</creatorcontrib><description>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24248111</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; bentonite ; Composite materials ; electrical impedance spectroscopy (EIS) ; feature extraction ; feature importance ; Machine learning ; Methods ; Monitoring systems ; Neural networks ; principal component analysis (PCA) ; quartz sand ; Spectrum analysis ; Water</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.8111</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</cites><orcidid>0000-0003-2000-4730 ; 0000-0001-5771-2277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149752479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149752479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ma, Xiaohu</creatorcontrib><creatorcontrib>Fischerauer, Alice</creatorcontrib><creatorcontrib>Haacke, Sebastian</creatorcontrib><creatorcontrib>Fischerauer, Gerhard</creatorcontrib><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><title>Sensors (Basel, Switzerland)</title><description>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</description><subject>Algorithms</subject><subject>bentonite</subject><subject>Composite materials</subject><subject>electrical impedance spectroscopy (EIS)</subject><subject>feature extraction</subject><subject>feature importance</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>principal component analysis (PCA)</subject><subject>quartz sand</subject><subject>Spectrum analysis</subject><subject>Water</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUbtOAzEQPCGQCIGCP7BERXHgx50fZQgBIgVRBGrLrxCHi33YpsjfcyEIUe3s7Gh2V1NVlwjeECLgbcYNbjhC6KgaoQHWHGN4_A-fVmc5byDEhBA-qj7uXXFp64MqPgYQV6CsHbhzocTgiwPTGMrQAB_Ac-ysD-9gqYLN4C3v8WRez8JaBeMsmHXOlOSN6sB82zu7Z8Gy35Mxm9jvzquTleqyu_it4-rtYfY6faoXL4_z6WRRG4S5qIXThmJtIMHYcmEIVQoLyDnFTcucghoL3RJhWzroiWkhbREiiulhTjkn42p-8LVRbWSf_FalnYzKyx8ipnepUvGmc5JxBrVFtnGKNkhYzRltqNLacMIYIoPX1cGrT_Hzy-UiN_ErheF8SVAjWIsbJgbV9UFlhldzcqu_rQjKfS7yLxfyDVn_fXg</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Ma, Xiaohu</creator><creator>Fischerauer, Alice</creator><creator>Haacke, Sebastian</creator><creator>Fischerauer, Gerhard</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2000-4730</orcidid><orcidid>https://orcid.org/0000-0001-5771-2277</orcidid></search><sort><creationdate>20241219</creationdate><title>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</title><author>Ma, Xiaohu ; Fischerauer, Alice ; Haacke, Sebastian ; Fischerauer, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>bentonite</topic><topic>Composite materials</topic><topic>electrical impedance spectroscopy (EIS)</topic><topic>feature extraction</topic><topic>feature importance</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>principal component analysis (PCA)</topic><topic>quartz sand</topic><topic>Spectrum analysis</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaohu</creatorcontrib><creatorcontrib>Fischerauer, Alice</creatorcontrib><creatorcontrib>Haacke, Sebastian</creatorcontrib><creatorcontrib>Fischerauer, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaohu</au><au>Fischerauer, Alice</au><au>Haacke, Sebastian</au><au>Fischerauer, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2024-12-19</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>8111</spage><pages>8111-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution. To establish a fundamental dataset, we characterized various sand mixtures containing quartz sand, bentonite, and deionized water using EIS in the frequency range from 20 Hz to 1 MHz under laboratory conditions and also measured the water content and density of samples. Principal component analysis was applied to the EIS data to extract relevant features as input data for machine learning models. These features, combined with water content and density, were used to train regression models based on fully connected neural networks to estimate the bentonite content in the mixtures. This led to a high prediction accuracy (R2 = 0.94). These results demonstrate that AI-enhanced EIS has promising potential for the in-line monitoring of bulk material in the foundry industry, paving the way for optimized process control and efficient sand recycling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s24248111</doi><orcidid>https://orcid.org/0000-0003-2000-4730</orcidid><orcidid>https://orcid.org/0000-0001-5771-2277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.8111 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7870bd1d4ea6419db87646abbc837713 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Algorithms bentonite Composite materials electrical impedance spectroscopy (EIS) feature extraction feature importance Machine learning Methods Monitoring systems Neural networks principal component analysis (PCA) quartz sand Spectrum analysis Water |
title | Determination of the Bentonite Content in Molding Sands Using AI-Enhanced Electrical Impedance Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20Bentonite%20Content%20in%20Molding%20Sands%20Using%20AI-Enhanced%20Electrical%20Impedance%20Spectroscopy&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ma,%20Xiaohu&rft.date=2024-12-19&rft.volume=24&rft.issue=24&rft.spage=8111&rft.pages=8111-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24248111&rft_dat=%3Cproquest_doaj_%3E3149752479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1289-9ebc62bc0322d89c36aa2908862457ea0b29b539d561283c5065113a7b2456883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149752479&rft_id=info:pmid/&rfr_iscdi=true |