Loading…
Machine learning coarse-grained potentials of protein thermodynamics
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular poten...
Saved in:
Published in: | Nature communications 2023-09, Vol.14 (1), p.5739-5739, Article 5739 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443 |
container_end_page | 5739 |
container_issue | 1 |
container_start_page | 5739 |
container_title | Nature communications |
container_volume | 14 |
creator | Majewski, Maciej Pérez, Adrià Thölke, Philipp Doerr, Stefan Charron, Nicholas E. Giorgino, Toni Husic, Brooke E. Clementi, Cecilia Noé, Frank De Fabritiis, Gianni |
description | A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics. |
doi_str_mv | 10.1038/s41467-023-41343-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6</doaj_id><sourcerecordid>2865144375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</originalsourceid><addsrcrecordid>eNp9kU1v3CAQhlHVqImS_IEeKku99OKWAWzwqarSr0iJemnPaIzBy8qGLXgj5d-XrNM06SFcgJlnXmZ4CXkN9D1Qrj5kAaKVNWW8FsAFr-EFOWFUQA2S8ZePzsfkPOctLYt3oIR4RY65lCCU4ifk8zWajQ-2miym4MNYmYgp23pMWMJDtYuLDYvHKVfRVbtUrj5Uy8amOQ63AWdv8hk5cgWw5_f7Kfn19cvPi-_11Y9vlxefrmrTCFjqdmCq6RhyoVrH0HFpoOmsajnt0dpB0d4Zp-SASnIqkQMCKnQGEbpBCH5KLlfdIeJW75KfMd3qiF4fAjGNGtPizWS1VFJQ6GjLjRCtomhsb3pq-9KE601btD6uWrt9P9vBlCETTk9En2aC3-gx3migDRVM3Cm8u1dI8ffe5kXPPhs7TRhs3GfNVNtIVQahBX37H7qN-xTKXx0oKLPJplBspUyKOSfrHroBqu9M16vpupiuD6ZrKEVvHs_xUPLX4gLwFcglFUab_r39jOwfOVO3-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865144375</pqid></control><display><type>article</type><title>Machine learning coarse-grained potentials of protein thermodynamics</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</creator><creatorcontrib>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</creatorcontrib><description>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41343-1</identifier><identifier>PMID: 37714883</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2410 ; 631/114/663 ; 631/45/535/1267 ; 639/638/563/981 ; Artificial neural networks ; Ataxia Telangiectasia Mutated Proteins ; Biological activity ; Humanities and Social Sciences ; Learning algorithms ; Machine Learning ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Neural networks ; Physics ; Protein structure ; Proteins ; Science ; Science (multidisciplinary) ; Secondary structure ; Simulation ; Statistical mechanics ; Structure-function relationships ; Thermodynamics</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5739-5739, Article 5739</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</citedby><cites>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</cites><orcidid>0000-0003-2605-8166 ; 0000-0003-4169-9324 ; 0000-0003-3913-4877 ; 0000-0003-2637-1179 ; 0000-0001-9221-2358 ; 0000-0002-3208-2501 ; 0000-0001-6449-0596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865144375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865144375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37714883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Pérez, Adrià</creatorcontrib><creatorcontrib>Thölke, Philipp</creatorcontrib><creatorcontrib>Doerr, Stefan</creatorcontrib><creatorcontrib>Charron, Nicholas E.</creatorcontrib><creatorcontrib>Giorgino, Toni</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>Machine learning coarse-grained potentials of protein thermodynamics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</description><subject>631/114/1305</subject><subject>631/114/2410</subject><subject>631/114/663</subject><subject>631/45/535/1267</subject><subject>639/638/563/981</subject><subject>Artificial neural networks</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Biological activity</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><subject>Structure-function relationships</subject><subject>Thermodynamics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v3CAQhlHVqImS_IEeKku99OKWAWzwqarSr0iJemnPaIzBy8qGLXgj5d-XrNM06SFcgJlnXmZ4CXkN9D1Qrj5kAaKVNWW8FsAFr-EFOWFUQA2S8ZePzsfkPOctLYt3oIR4RY65lCCU4ifk8zWajQ-2miym4MNYmYgp23pMWMJDtYuLDYvHKVfRVbtUrj5Uy8amOQ63AWdv8hk5cgWw5_f7Kfn19cvPi-_11Y9vlxefrmrTCFjqdmCq6RhyoVrH0HFpoOmsajnt0dpB0d4Zp-SASnIqkQMCKnQGEbpBCH5KLlfdIeJW75KfMd3qiF4fAjGNGtPizWS1VFJQ6GjLjRCtomhsb3pq-9KE601btD6uWrt9P9vBlCETTk9En2aC3-gx3migDRVM3Cm8u1dI8ffe5kXPPhs7TRhs3GfNVNtIVQahBX37H7qN-xTKXx0oKLPJplBspUyKOSfrHroBqu9M16vpupiuD6ZrKEVvHs_xUPLX4gLwFcglFUab_r39jOwfOVO3-Q</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Majewski, Maciej</creator><creator>Pérez, Adrià</creator><creator>Thölke, Philipp</creator><creator>Doerr, Stefan</creator><creator>Charron, Nicholas E.</creator><creator>Giorgino, Toni</creator><creator>Husic, Brooke E.</creator><creator>Clementi, Cecilia</creator><creator>Noé, Frank</creator><creator>De Fabritiis, Gianni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0003-2637-1179</orcidid><orcidid>https://orcid.org/0000-0001-9221-2358</orcidid><orcidid>https://orcid.org/0000-0002-3208-2501</orcidid><orcidid>https://orcid.org/0000-0001-6449-0596</orcidid></search><sort><creationdate>20230915</creationdate><title>Machine learning coarse-grained potentials of protein thermodynamics</title><author>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1305</topic><topic>631/114/2410</topic><topic>631/114/663</topic><topic>631/45/535/1267</topic><topic>639/638/563/981</topic><topic>Artificial neural networks</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Biological activity</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><topic>Structure-function relationships</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Pérez, Adrià</creatorcontrib><creatorcontrib>Thölke, Philipp</creatorcontrib><creatorcontrib>Doerr, Stefan</creatorcontrib><creatorcontrib>Charron, Nicholas E.</creatorcontrib><creatorcontrib>Giorgino, Toni</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majewski, Maciej</au><au>Pérez, Adrià</au><au>Thölke, Philipp</au><au>Doerr, Stefan</au><au>Charron, Nicholas E.</au><au>Giorgino, Toni</au><au>Husic, Brooke E.</au><au>Clementi, Cecilia</au><au>Noé, Frank</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning coarse-grained potentials of protein thermodynamics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-09-15</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5739</spage><epage>5739</epage><pages>5739-5739</pages><artnum>5739</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37714883</pmid><doi>10.1038/s41467-023-41343-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0003-2637-1179</orcidid><orcidid>https://orcid.org/0000-0001-9221-2358</orcidid><orcidid>https://orcid.org/0000-0002-3208-2501</orcidid><orcidid>https://orcid.org/0000-0001-6449-0596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-09, Vol.14 (1), p.5739-5739, Article 5739 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6 |
source | Publicly Available Content Database; PMC (PubMed Central); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/114/2410 631/114/663 631/45/535/1267 639/638/563/981 Artificial neural networks Ataxia Telangiectasia Mutated Proteins Biological activity Humanities and Social Sciences Learning algorithms Machine Learning Molecular dynamics Molecular Dynamics Simulation multidisciplinary Neural networks Physics Protein structure Proteins Science Science (multidisciplinary) Secondary structure Simulation Statistical mechanics Structure-function relationships Thermodynamics |
title | Machine learning coarse-grained potentials of protein thermodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20coarse-grained%20potentials%20of%20protein%20thermodynamics&rft.jtitle=Nature%20communications&rft.au=Majewski,%20Maciej&rft.date=2023-09-15&rft.volume=14&rft.issue=1&rft.spage=5739&rft.epage=5739&rft.pages=5739-5739&rft.artnum=5739&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41343-1&rft_dat=%3Cproquest_doaj_%3E2865144375%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865144375&rft_id=info:pmid/37714883&rfr_iscdi=true |