Loading…

Machine learning coarse-grained potentials of protein thermodynamics

A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular poten...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5739-5739, Article 5739
Main Authors: Majewski, Maciej, Pérez, Adrià, Thölke, Philipp, Doerr, Stefan, Charron, Nicholas E., Giorgino, Toni, Husic, Brooke E., Clementi, Cecilia, Noé, Frank, De Fabritiis, Gianni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443
cites cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443
container_end_page 5739
container_issue 1
container_start_page 5739
container_title Nature communications
container_volume 14
creator Majewski, Maciej
Pérez, Adrià
Thölke, Philipp
Doerr, Stefan
Charron, Nicholas E.
Giorgino, Toni
Husic, Brooke E.
Clementi, Cecilia
Noé, Frank
De Fabritiis, Gianni
description A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics. Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.
doi_str_mv 10.1038/s41467-023-41343-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6</doaj_id><sourcerecordid>2865144375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</originalsourceid><addsrcrecordid>eNp9kU1v3CAQhlHVqImS_IEeKku99OKWAWzwqarSr0iJemnPaIzBy8qGLXgj5d-XrNM06SFcgJlnXmZ4CXkN9D1Qrj5kAaKVNWW8FsAFr-EFOWFUQA2S8ZePzsfkPOctLYt3oIR4RY65lCCU4ifk8zWajQ-2miym4MNYmYgp23pMWMJDtYuLDYvHKVfRVbtUrj5Uy8amOQ63AWdv8hk5cgWw5_f7Kfn19cvPi-_11Y9vlxefrmrTCFjqdmCq6RhyoVrH0HFpoOmsajnt0dpB0d4Zp-SASnIqkQMCKnQGEbpBCH5KLlfdIeJW75KfMd3qiF4fAjGNGtPizWS1VFJQ6GjLjRCtomhsb3pq-9KE601btD6uWrt9P9vBlCETTk9En2aC3-gx3migDRVM3Cm8u1dI8ffe5kXPPhs7TRhs3GfNVNtIVQahBX37H7qN-xTKXx0oKLPJplBspUyKOSfrHroBqu9M16vpupiuD6ZrKEVvHs_xUPLX4gLwFcglFUab_r39jOwfOVO3-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865144375</pqid></control><display><type>article</type><title>Machine learning coarse-grained potentials of protein thermodynamics</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</creator><creatorcontrib>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</creatorcontrib><description>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics. Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41343-1</identifier><identifier>PMID: 37714883</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2410 ; 631/114/663 ; 631/45/535/1267 ; 639/638/563/981 ; Artificial neural networks ; Ataxia Telangiectasia Mutated Proteins ; Biological activity ; Humanities and Social Sciences ; Learning algorithms ; Machine Learning ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Neural networks ; Physics ; Protein structure ; Proteins ; Science ; Science (multidisciplinary) ; Secondary structure ; Simulation ; Statistical mechanics ; Structure-function relationships ; Thermodynamics</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5739-5739, Article 5739</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</citedby><cites>FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</cites><orcidid>0000-0003-2605-8166 ; 0000-0003-4169-9324 ; 0000-0003-3913-4877 ; 0000-0003-2637-1179 ; 0000-0001-9221-2358 ; 0000-0002-3208-2501 ; 0000-0001-6449-0596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865144375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865144375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37714883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Pérez, Adrià</creatorcontrib><creatorcontrib>Thölke, Philipp</creatorcontrib><creatorcontrib>Doerr, Stefan</creatorcontrib><creatorcontrib>Charron, Nicholas E.</creatorcontrib><creatorcontrib>Giorgino, Toni</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>Machine learning coarse-grained potentials of protein thermodynamics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics. Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</description><subject>631/114/1305</subject><subject>631/114/2410</subject><subject>631/114/663</subject><subject>631/45/535/1267</subject><subject>639/638/563/981</subject><subject>Artificial neural networks</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Biological activity</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><subject>Structure-function relationships</subject><subject>Thermodynamics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v3CAQhlHVqImS_IEeKku99OKWAWzwqarSr0iJemnPaIzBy8qGLXgj5d-XrNM06SFcgJlnXmZ4CXkN9D1Qrj5kAaKVNWW8FsAFr-EFOWFUQA2S8ZePzsfkPOctLYt3oIR4RY65lCCU4ifk8zWajQ-2miym4MNYmYgp23pMWMJDtYuLDYvHKVfRVbtUrj5Uy8amOQ63AWdv8hk5cgWw5_f7Kfn19cvPi-_11Y9vlxefrmrTCFjqdmCq6RhyoVrH0HFpoOmsajnt0dpB0d4Zp-SASnIqkQMCKnQGEbpBCH5KLlfdIeJW75KfMd3qiF4fAjGNGtPizWS1VFJQ6GjLjRCtomhsb3pq-9KE601btD6uWrt9P9vBlCETTk9En2aC3-gx3migDRVM3Cm8u1dI8ffe5kXPPhs7TRhs3GfNVNtIVQahBX37H7qN-xTKXx0oKLPJplBspUyKOSfrHroBqu9M16vpupiuD6ZrKEVvHs_xUPLX4gLwFcglFUab_r39jOwfOVO3-Q</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Majewski, Maciej</creator><creator>Pérez, Adrià</creator><creator>Thölke, Philipp</creator><creator>Doerr, Stefan</creator><creator>Charron, Nicholas E.</creator><creator>Giorgino, Toni</creator><creator>Husic, Brooke E.</creator><creator>Clementi, Cecilia</creator><creator>Noé, Frank</creator><creator>De Fabritiis, Gianni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0003-2637-1179</orcidid><orcidid>https://orcid.org/0000-0001-9221-2358</orcidid><orcidid>https://orcid.org/0000-0002-3208-2501</orcidid><orcidid>https://orcid.org/0000-0001-6449-0596</orcidid></search><sort><creationdate>20230915</creationdate><title>Machine learning coarse-grained potentials of protein thermodynamics</title><author>Majewski, Maciej ; Pérez, Adrià ; Thölke, Philipp ; Doerr, Stefan ; Charron, Nicholas E. ; Giorgino, Toni ; Husic, Brooke E. ; Clementi, Cecilia ; Noé, Frank ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1305</topic><topic>631/114/2410</topic><topic>631/114/663</topic><topic>631/45/535/1267</topic><topic>639/638/563/981</topic><topic>Artificial neural networks</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Biological activity</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><topic>Structure-function relationships</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majewski, Maciej</creatorcontrib><creatorcontrib>Pérez, Adrià</creatorcontrib><creatorcontrib>Thölke, Philipp</creatorcontrib><creatorcontrib>Doerr, Stefan</creatorcontrib><creatorcontrib>Charron, Nicholas E.</creatorcontrib><creatorcontrib>Giorgino, Toni</creatorcontrib><creatorcontrib>Husic, Brooke E.</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majewski, Maciej</au><au>Pérez, Adrià</au><au>Thölke, Philipp</au><au>Doerr, Stefan</au><au>Charron, Nicholas E.</au><au>Giorgino, Toni</au><au>Husic, Brooke E.</au><au>Clementi, Cecilia</au><au>Noé, Frank</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning coarse-grained potentials of protein thermodynamics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-09-15</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5739</spage><epage>5739</epage><pages>5739-5739</pages><artnum>5739</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics. Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37714883</pmid><doi>10.1038/s41467-023-41343-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2605-8166</orcidid><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3913-4877</orcidid><orcidid>https://orcid.org/0000-0003-2637-1179</orcidid><orcidid>https://orcid.org/0000-0001-9221-2358</orcidid><orcidid>https://orcid.org/0000-0002-3208-2501</orcidid><orcidid>https://orcid.org/0000-0001-6449-0596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5739-5739, Article 5739
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7874019063c44680acebcb0eb6d2fbc6
source Publicly Available Content Database; PMC (PubMed Central); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/114/2410
631/114/663
631/45/535/1267
639/638/563/981
Artificial neural networks
Ataxia Telangiectasia Mutated Proteins
Biological activity
Humanities and Social Sciences
Learning algorithms
Machine Learning
Molecular dynamics
Molecular Dynamics Simulation
multidisciplinary
Neural networks
Physics
Protein structure
Proteins
Science
Science (multidisciplinary)
Secondary structure
Simulation
Statistical mechanics
Structure-function relationships
Thermodynamics
title Machine learning coarse-grained potentials of protein thermodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20coarse-grained%20potentials%20of%20protein%20thermodynamics&rft.jtitle=Nature%20communications&rft.au=Majewski,%20Maciej&rft.date=2023-09-15&rft.volume=14&rft.issue=1&rft.spage=5739&rft.epage=5739&rft.pages=5739-5739&rft.artnum=5739&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41343-1&rft_dat=%3Cproquest_doaj_%3E2865144375%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-6d28592a3486f2af37c159e8630baeed80bfcf87da87307a31a1a8afcaa19d443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865144375&rft_id=info:pmid/37714883&rfr_iscdi=true