Loading…

Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test

Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test,...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in energy research 2023-11, Vol.11
Main Authors: Zhu, Yihua, Liu, Ren, Chang, Dongxu, Guo, Hengdao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153
container_end_page
container_issue
container_start_page
container_title Frontiers in energy research
container_volume 11
creator Zhu, Yihua
Liu, Ren
Chang, Dongxu
Guo, Hengdao
description Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.
doi_str_mv 10.3389/fenrg.2023.1285317
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</doaj_id><sourcerecordid>oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</originalsourceid><addsrcrecordid>eNpNkctKAzEUhgdRsGhfwFVeYGouM0lmKfVWKLhRcBfOJCcldS4lSZW-vb0hrs7Hv_jO4iuKO0ZnQujm3uMQVzNOuZgxrmvB1EUx4byRZd3oz8t_fF1MU1pTSpngdcXopEiPmNHmMA5k9MRDl5A4yEDCsD7vkDPYr0T2uBl_MJK0Sxn7RFpI6A5zj5C2EXsccolhhcM3dFskEVNwW-hICn3oIIa8IxlTvi2ujo-m53tTfDw_vc9fy-Xby2L-sCytoDqXjrdOW8lU4zmi9qptfOusAK-tYHuqpJQadFW3IKCphRYWqWIC0VnPanFTLE5eN8LabGLoIe7MCMEchzGuDMQcbIdGaSUt57xGrCq0TVtb6RTV0FKqW6n2Ln5y2TimFNH_-Rg1hwrmWMEcKphzBfELGot_rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</creator><creatorcontrib>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</creatorcontrib><description>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</description><identifier>ISSN: 2296-598X</identifier><identifier>EISSN: 2296-598X</identifier><identifier>DOI: 10.3389/fenrg.2023.1285317</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>AC state estimation ; bad data detection ; cyber security ; false data injection attacks ; measurement-eigenvalue residual similarity</subject><ispartof>Frontiers in energy research, 2023-11, Vol.11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chang, Dongxu</creatorcontrib><creatorcontrib>Guo, Hengdao</creatorcontrib><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><title>Frontiers in energy research</title><description>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</description><subject>AC state estimation</subject><subject>bad data detection</subject><subject>cyber security</subject><subject>false data injection attacks</subject><subject>measurement-eigenvalue residual similarity</subject><issn>2296-598X</issn><issn>2296-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctKAzEUhgdRsGhfwFVeYGouM0lmKfVWKLhRcBfOJCcldS4lSZW-vb0hrs7Hv_jO4iuKO0ZnQujm3uMQVzNOuZgxrmvB1EUx4byRZd3oz8t_fF1MU1pTSpngdcXopEiPmNHmMA5k9MRDl5A4yEDCsD7vkDPYr0T2uBl_MJK0Sxn7RFpI6A5zj5C2EXsccolhhcM3dFskEVNwW-hICn3oIIa8IxlTvi2ujo-m53tTfDw_vc9fy-Xby2L-sCytoDqXjrdOW8lU4zmi9qptfOusAK-tYHuqpJQadFW3IKCphRYWqWIC0VnPanFTLE5eN8LabGLoIe7MCMEchzGuDMQcbIdGaSUt57xGrCq0TVtb6RTV0FKqW6n2Ln5y2TimFNH_-Rg1hwrmWMEcKphzBfELGot_rw</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Zhu, Yihua</creator><creator>Liu, Ren</creator><creator>Chang, Dongxu</creator><creator>Guo, Hengdao</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20231113</creationdate><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><author>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC state estimation</topic><topic>bad data detection</topic><topic>cyber security</topic><topic>false data injection attacks</topic><topic>measurement-eigenvalue residual similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chang, Dongxu</creatorcontrib><creatorcontrib>Guo, Hengdao</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Frontiers in energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yihua</au><au>Liu, Ren</au><au>Chang, Dongxu</au><au>Guo, Hengdao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</atitle><jtitle>Frontiers in energy research</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>11</volume><issn>2296-598X</issn><eissn>2296-598X</eissn><abstract>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fenrg.2023.1285317</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-598X
ispartof Frontiers in energy research, 2023-11, Vol.11
issn 2296-598X
2296-598X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67
source ROAD: Directory of Open Access Scholarly Resources
subjects AC state estimation
bad data detection
cyber security
false data injection attacks
measurement-eigenvalue residual similarity
title Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20false%20data%20injection%20attacks%20on%20power%20systems%20based%20on%20measurement-eigenvalue%20residual%20similarity%20test&rft.jtitle=Frontiers%20in%20energy%20research&rft.au=Zhu,%20Yihua&rft.date=2023-11-13&rft.volume=11&rft.issn=2296-598X&rft.eissn=2296-598X&rft_id=info:doi/10.3389/fenrg.2023.1285317&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true