Loading…
Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test
Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test,...
Saved in:
Published in: | Frontiers in energy research 2023-11, Vol.11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Frontiers in energy research |
container_volume | 11 |
creator | Zhu, Yihua Liu, Ren Chang, Dongxu Guo, Hengdao |
description | Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions. |
doi_str_mv | 10.3389/fenrg.2023.1285317 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</doaj_id><sourcerecordid>oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</originalsourceid><addsrcrecordid>eNpNkctKAzEUhgdRsGhfwFVeYGouM0lmKfVWKLhRcBfOJCcldS4lSZW-vb0hrs7Hv_jO4iuKO0ZnQujm3uMQVzNOuZgxrmvB1EUx4byRZd3oz8t_fF1MU1pTSpngdcXopEiPmNHmMA5k9MRDl5A4yEDCsD7vkDPYr0T2uBl_MJK0Sxn7RFpI6A5zj5C2EXsccolhhcM3dFskEVNwW-hICn3oIIa8IxlTvi2ujo-m53tTfDw_vc9fy-Xby2L-sCytoDqXjrdOW8lU4zmi9qptfOusAK-tYHuqpJQadFW3IKCphRYWqWIC0VnPanFTLE5eN8LabGLoIe7MCMEchzGuDMQcbIdGaSUt57xGrCq0TVtb6RTV0FKqW6n2Ln5y2TimFNH_-Rg1hwrmWMEcKphzBfELGot_rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</creator><creatorcontrib>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</creatorcontrib><description>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</description><identifier>ISSN: 2296-598X</identifier><identifier>EISSN: 2296-598X</identifier><identifier>DOI: 10.3389/fenrg.2023.1285317</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>AC state estimation ; bad data detection ; cyber security ; false data injection attacks ; measurement-eigenvalue residual similarity</subject><ispartof>Frontiers in energy research, 2023-11, Vol.11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chang, Dongxu</creatorcontrib><creatorcontrib>Guo, Hengdao</creatorcontrib><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><title>Frontiers in energy research</title><description>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</description><subject>AC state estimation</subject><subject>bad data detection</subject><subject>cyber security</subject><subject>false data injection attacks</subject><subject>measurement-eigenvalue residual similarity</subject><issn>2296-598X</issn><issn>2296-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctKAzEUhgdRsGhfwFVeYGouM0lmKfVWKLhRcBfOJCcldS4lSZW-vb0hrs7Hv_jO4iuKO0ZnQujm3uMQVzNOuZgxrmvB1EUx4byRZd3oz8t_fF1MU1pTSpngdcXopEiPmNHmMA5k9MRDl5A4yEDCsD7vkDPYr0T2uBl_MJK0Sxn7RFpI6A5zj5C2EXsccolhhcM3dFskEVNwW-hICn3oIIa8IxlTvi2ujo-m53tTfDw_vc9fy-Xby2L-sCytoDqXjrdOW8lU4zmi9qptfOusAK-tYHuqpJQadFW3IKCphRYWqWIC0VnPanFTLE5eN8LabGLoIe7MCMEchzGuDMQcbIdGaSUt57xGrCq0TVtb6RTV0FKqW6n2Ln5y2TimFNH_-Rg1hwrmWMEcKphzBfELGot_rw</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Zhu, Yihua</creator><creator>Liu, Ren</creator><creator>Chang, Dongxu</creator><creator>Guo, Hengdao</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20231113</creationdate><title>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</title><author>Zhu, Yihua ; Liu, Ren ; Chang, Dongxu ; Guo, Hengdao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC state estimation</topic><topic>bad data detection</topic><topic>cyber security</topic><topic>false data injection attacks</topic><topic>measurement-eigenvalue residual similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chang, Dongxu</creatorcontrib><creatorcontrib>Guo, Hengdao</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Frontiers in energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yihua</au><au>Liu, Ren</au><au>Chang, Dongxu</au><au>Guo, Hengdao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test</atitle><jtitle>Frontiers in energy research</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>11</volume><issn>2296-598X</issn><eissn>2296-598X</eissn><abstract>Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fenrg.2023.1285317</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-598X |
ispartof | Frontiers in energy research, 2023-11, Vol.11 |
issn | 2296-598X 2296-598X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67 |
source | ROAD: Directory of Open Access Scholarly Resources |
subjects | AC state estimation bad data detection cyber security false data injection attacks measurement-eigenvalue residual similarity |
title | Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20false%20data%20injection%20attacks%20on%20power%20systems%20based%20on%20measurement-eigenvalue%20residual%20similarity%20test&rft.jtitle=Frontiers%20in%20energy%20research&rft.au=Zhu,%20Yihua&rft.date=2023-11-13&rft.volume=11&rft.issn=2296-598X&rft.eissn=2296-598X&rft_id=info:doi/10.3389/fenrg.2023.1285317&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7876c2225ee44ec9b5c6d708ab008b67%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d2bd8c6179f2ee8f7b9fbdc3af8c31bdc46668a845ba3a95383ce0713eedcf153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |