Loading…

Hollow-Channel Paper Analytical Devices Supported Biofuel Cell-Based Self-Powered Molecularly Imprinted Polymer Sensor for Pesticide Detection

Herein, a paper-based glucose/air biofuel cell (BFC) was constructed and implemented for self-powered pesticide detection. Our developed paper-based chip relies on a hollow-channel to transport fluids rather than capillarity, which reduces analysis times as well as physical absorption. The gold nano...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2022-11, Vol.12 (11), p.974
Main Authors: Wang, Yanhu, Shi, Huihui, Sun, Jiantao, Xu, Jianjian, Yang, Mengchun, Yu, Jinghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, a paper-based glucose/air biofuel cell (BFC) was constructed and implemented for self-powered pesticide detection. Our developed paper-based chip relies on a hollow-channel to transport fluids rather than capillarity, which reduces analysis times as well as physical absorption. The gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) were adapted to modify the paper fibers to fabricate the flexible conductive paper anode/cathode electrode (Au–PAE/CNT–PCE). Molecularly imprinted polymers (MIPs) using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template were synthesized on Au–PAE for signal control. In the cathode, bilirubin oxidase (BOD) was used for the oxygen reduction reaction. Based on a competitive reaction between 2,4-D and glucose-oxidase-labeled 2,4-D (GOx-2,4-D), the amount of GOx immobilized on the bioanode can be simply tailored, thus a signal-off self-powered sensing platform was achieved for 2,4-D determination. Meanwhile, the coupling of the paper supercapacitor (PS) with the paper-based chip provides a simple route for signal amplification. Combined with a portable digital multi-meter detector, the amplified signal can be sensitively readout. Through rational design of the paper analytical device, the combination of BFC and PS provides a new prototype for constructing a low-cost, simple, portable, and sensitive self-powered biosensor lab-on-paper, which could be easily expanded in the field of clinical analysis and drug delivery.
ISSN:2079-6374
2079-6374
DOI:10.3390/bios12110974