Loading…
High Performance Fine-Grained Biodegradable Mg-Zn-Ca Alloys Processed by Severe Plastic Deformation
The tensile strength, fatigue, and corrosion fatigue performance of the magnesium alloy ZX40 benefit strongly from hybrid deformation processing involving warm equal-channel angular pressing (ECAP) at the first step and room temperature rotary swaging at the second. The general corrosion resistance...
Saved in:
Published in: | Metals (Basel ) 2019-02, Vol.9 (2), p.186 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tensile strength, fatigue, and corrosion fatigue performance of the magnesium alloy ZX40 benefit strongly from hybrid deformation processing involving warm equal-channel angular pressing (ECAP) at the first step and room temperature rotary swaging at the second. The general corrosion resistance improved as well, though to a lesser extent. The observed strengthening is associated with a combined effect of substantial microstructure refinement down to the nanoscale, reducing deformation twinning activity, dislocation accumulation, and texture transformation. The ultimate tensile strength and the endurance limit in the ultrafine-grained material reached or exceeded 380 and 120 MPa, respectively, which are remarkable values for this nominally low strength alloy. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met9020186 |