Loading…
Evaluation of CO2 Hydrogenation in a Modular Fixed-Bed Reactor Prototype
Low-cost iron-based CO2 hydrogenation catalysts have shown promise as a viable route to the production of value-added hydrocarbon building blocks. It is envisioned that these hydrocarbons will be used to augment industrial chemical processes and produce drop-in replacement operational fuel. To this...
Saved in:
Published in: | Catalysts 2020-09, Vol.10 (9), p.970 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-cost iron-based CO2 hydrogenation catalysts have shown promise as a viable route to the production of value-added hydrocarbon building blocks. It is envisioned that these hydrocarbons will be used to augment industrial chemical processes and produce drop-in replacement operational fuel. To this end, the U.S. Naval Research Laboratory (NRL) has been designing, testing, modeling, and evaluating CO2 hydrogenation catalysts in a laboratory-scale fixed-bed environment. To transition from the laboratory to a commercial process, the catalyst viability and performance must be evaluated at scale. The performance of a Macrolite®-supported iron-based catalyst in a commercial-scale fixed-bed modular reactor prototype was evaluated under different reactor feed rates and product recycling conditions. CO2 conversion increased from 26% to as high as 69% by recycling a portion of the product stream and CO selectivity was greatly reduced from 45% to 9% in favor of hydrocarbon production. In addition, the catalyst was successfully regenerated for optimum performance. Catalyst characterization by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), along with modeling and kinetic analysis, highlighted the potential challenges and benefits associated with scaling-up catalyst materials and processes for industrial implementation. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal10090970 |