Loading…

Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions

The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-10, Vol.26 (20), p.6317
Main Authors: Aoki, Masaaki, Masuda, Yu, Ishikawa, Kota, Tamada, Yasushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3
cites cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3
container_end_page
container_issue 20
container_start_page 6317
container_title Molecules (Basel, Switzerland)
container_volume 26
creator Aoki, Masaaki
Masuda, Yu
Ishikawa, Kota
Tamada, Yasushi
description The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.
doi_str_mv 10.3390/molecules26206317
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753</doaj_id><sourcerecordid>2584784676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</originalsourceid><addsrcrecordid>eNplkUtPGzEQgK2KqlDaH8BtJS5c0vq1flyQUNQAEhIShbPltceJw2YN9i5S--vrEIpKuYytmW8-eTwIHRH8jTGNv29SD27qoVBBsWBEfkAHhFM8Y5jrvX_u--hzKWuMKeGk_YT2GReKKy0P0PUiWzfGNNhtaFJobmAJA2Q7gm9-xv6-WcQupzg0dvDNfGW3POT4-7VhXEHz11K-oI_B9gW-vpyH6G7x43Z-Mbu6Pr-cn13NXMvEOHOMtjgI7XHogtaEaAxECtpqXoMKtei1Bcs6KzV32CrssOy0l8IBMM8O0eXO65Ndm4ccNzb_MslG85xIeWlsHqPrwUilKaktHVaSawaqpSRY6QLxNdOy6jrduR6mbgPewTBm27-Rvq0McWWW6cmolmOlcRWcvAhyepygjGYTi4O-twOkqZg6EZeKCykqevwfuk5THupXPVN1et3SSpEd5XIqJUN4fQzBZrt682717A9EVqIm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584462952</pqid></control><display><type>article</type><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</creator><creatorcontrib>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</creatorcontrib><description>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26206317</identifier><identifier>PMID: 34684897</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ammonium ; Ammonium sulfate ; Aqueous solutions ; Cell proliferation ; Cellulose ; Degumming ; Dialysis ; Electrophoresis ; Fractionation ; Fractions ; Gel electrophoresis ; Hemodialysis ; Influence ; Liquid chromatography ; Low temperature ; Mechanical properties ; Methods ; Molecular weight ; nanofiber ; Nanofibers ; Physical properties ; Polyacrylamide ; Polyethylene ; Polymer blends ; Polymer melts ; Polymers ; porous structure ; Protein structure ; Proteins ; Rheology ; Secondary structure ; Silk fibroin ; Surface properties</subject><ispartof>Molecules (Basel, Switzerland), 2021-10, Vol.26 (20), p.6317</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</citedby><cites>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584462952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584462952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Aoki, Masaaki</creatorcontrib><creatorcontrib>Masuda, Yu</creatorcontrib><creatorcontrib>Ishikawa, Kota</creatorcontrib><creatorcontrib>Tamada, Yasushi</creatorcontrib><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><title>Molecules (Basel, Switzerland)</title><description>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</description><subject>Ammonium</subject><subject>Ammonium sulfate</subject><subject>Aqueous solutions</subject><subject>Cell proliferation</subject><subject>Cellulose</subject><subject>Degumming</subject><subject>Dialysis</subject><subject>Electrophoresis</subject><subject>Fractionation</subject><subject>Fractions</subject><subject>Gel electrophoresis</subject><subject>Hemodialysis</subject><subject>Influence</subject><subject>Liquid chromatography</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Molecular weight</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>Physical properties</subject><subject>Polyacrylamide</subject><subject>Polyethylene</subject><subject>Polymer blends</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>porous structure</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Rheology</subject><subject>Secondary structure</subject><subject>Silk fibroin</subject><subject>Surface properties</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtPGzEQgK2KqlDaH8BtJS5c0vq1flyQUNQAEhIShbPltceJw2YN9i5S--vrEIpKuYytmW8-eTwIHRH8jTGNv29SD27qoVBBsWBEfkAHhFM8Y5jrvX_u--hzKWuMKeGk_YT2GReKKy0P0PUiWzfGNNhtaFJobmAJA2Q7gm9-xv6-WcQupzg0dvDNfGW3POT4-7VhXEHz11K-oI_B9gW-vpyH6G7x43Z-Mbu6Pr-cn13NXMvEOHOMtjgI7XHogtaEaAxECtpqXoMKtei1Bcs6KzV32CrssOy0l8IBMM8O0eXO65Ndm4ccNzb_MslG85xIeWlsHqPrwUilKaktHVaSawaqpSRY6QLxNdOy6jrduR6mbgPewTBm27-Rvq0McWWW6cmolmOlcRWcvAhyepygjGYTi4O-twOkqZg6EZeKCykqevwfuk5THupXPVN1et3SSpEd5XIqJUN4fQzBZrt682717A9EVqIm</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Aoki, Masaaki</creator><creator>Masuda, Yu</creator><creator>Ishikawa, Kota</creator><creator>Tamada, Yasushi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211019</creationdate><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><author>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium</topic><topic>Ammonium sulfate</topic><topic>Aqueous solutions</topic><topic>Cell proliferation</topic><topic>Cellulose</topic><topic>Degumming</topic><topic>Dialysis</topic><topic>Electrophoresis</topic><topic>Fractionation</topic><topic>Fractions</topic><topic>Gel electrophoresis</topic><topic>Hemodialysis</topic><topic>Influence</topic><topic>Liquid chromatography</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Molecular weight</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>Physical properties</topic><topic>Polyacrylamide</topic><topic>Polyethylene</topic><topic>Polymer blends</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>porous structure</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Rheology</topic><topic>Secondary structure</topic><topic>Silk fibroin</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Masaaki</creatorcontrib><creatorcontrib>Masuda, Yu</creatorcontrib><creatorcontrib>Ishikawa, Kota</creatorcontrib><creatorcontrib>Tamada, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Masaaki</au><au>Masuda, Yu</au><au>Ishikawa, Kota</au><au>Tamada, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2021-10-19</date><risdate>2021</risdate><volume>26</volume><issue>20</issue><spage>6317</spage><pages>6317-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34684897</pmid><doi>10.3390/molecules26206317</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2021-10, Vol.26 (20), p.6317
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753
source Publicly Available Content (ProQuest); PubMed Central
subjects Ammonium
Ammonium sulfate
Aqueous solutions
Cell proliferation
Cellulose
Degumming
Dialysis
Electrophoresis
Fractionation
Fractions
Gel electrophoresis
Hemodialysis
Influence
Liquid chromatography
Low temperature
Mechanical properties
Methods
Molecular weight
nanofiber
Nanofibers
Physical properties
Polyacrylamide
Polyethylene
Polymer blends
Polymer melts
Polymers
porous structure
Protein structure
Proteins
Rheology
Secondary structure
Silk fibroin
Surface properties
title Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractionation%20of%20Regenerated%20Silk%20Fibroin%20and%20Characterization%20of%20the%20Fractions&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Aoki,%20Masaaki&rft.date=2021-10-19&rft.volume=26&rft.issue=20&rft.spage=6317&rft.pages=6317-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26206317&rft_dat=%3Cproquest_doaj_%3E2584784676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584462952&rft_id=info:pmid/34684897&rfr_iscdi=true