Loading…
Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions
The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2021-10, Vol.26 (20), p.6317 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3 |
container_end_page | |
container_issue | 20 |
container_start_page | 6317 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 26 |
creator | Aoki, Masaaki Masuda, Yu Ishikawa, Kota Tamada, Yasushi |
description | The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials. |
doi_str_mv | 10.3390/molecules26206317 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753</doaj_id><sourcerecordid>2584784676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</originalsourceid><addsrcrecordid>eNplkUtPGzEQgK2KqlDaH8BtJS5c0vq1flyQUNQAEhIShbPltceJw2YN9i5S--vrEIpKuYytmW8-eTwIHRH8jTGNv29SD27qoVBBsWBEfkAHhFM8Y5jrvX_u--hzKWuMKeGk_YT2GReKKy0P0PUiWzfGNNhtaFJobmAJA2Q7gm9-xv6-WcQupzg0dvDNfGW3POT4-7VhXEHz11K-oI_B9gW-vpyH6G7x43Z-Mbu6Pr-cn13NXMvEOHOMtjgI7XHogtaEaAxECtpqXoMKtei1Bcs6KzV32CrssOy0l8IBMM8O0eXO65Ndm4ccNzb_MslG85xIeWlsHqPrwUilKaktHVaSawaqpSRY6QLxNdOy6jrduR6mbgPewTBm27-Rvq0McWWW6cmolmOlcRWcvAhyepygjGYTi4O-twOkqZg6EZeKCykqevwfuk5THupXPVN1et3SSpEd5XIqJUN4fQzBZrt682717A9EVqIm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584462952</pqid></control><display><type>article</type><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</creator><creatorcontrib>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</creatorcontrib><description>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26206317</identifier><identifier>PMID: 34684897</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ammonium ; Ammonium sulfate ; Aqueous solutions ; Cell proliferation ; Cellulose ; Degumming ; Dialysis ; Electrophoresis ; Fractionation ; Fractions ; Gel electrophoresis ; Hemodialysis ; Influence ; Liquid chromatography ; Low temperature ; Mechanical properties ; Methods ; Molecular weight ; nanofiber ; Nanofibers ; Physical properties ; Polyacrylamide ; Polyethylene ; Polymer blends ; Polymer melts ; Polymers ; porous structure ; Protein structure ; Proteins ; Rheology ; Secondary structure ; Silk fibroin ; Surface properties</subject><ispartof>Molecules (Basel, Switzerland), 2021-10, Vol.26 (20), p.6317</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</citedby><cites>FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584462952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584462952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Aoki, Masaaki</creatorcontrib><creatorcontrib>Masuda, Yu</creatorcontrib><creatorcontrib>Ishikawa, Kota</creatorcontrib><creatorcontrib>Tamada, Yasushi</creatorcontrib><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><title>Molecules (Basel, Switzerland)</title><description>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</description><subject>Ammonium</subject><subject>Ammonium sulfate</subject><subject>Aqueous solutions</subject><subject>Cell proliferation</subject><subject>Cellulose</subject><subject>Degumming</subject><subject>Dialysis</subject><subject>Electrophoresis</subject><subject>Fractionation</subject><subject>Fractions</subject><subject>Gel electrophoresis</subject><subject>Hemodialysis</subject><subject>Influence</subject><subject>Liquid chromatography</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Molecular weight</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>Physical properties</subject><subject>Polyacrylamide</subject><subject>Polyethylene</subject><subject>Polymer blends</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>porous structure</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Rheology</subject><subject>Secondary structure</subject><subject>Silk fibroin</subject><subject>Surface properties</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtPGzEQgK2KqlDaH8BtJS5c0vq1flyQUNQAEhIShbPltceJw2YN9i5S--vrEIpKuYytmW8-eTwIHRH8jTGNv29SD27qoVBBsWBEfkAHhFM8Y5jrvX_u--hzKWuMKeGk_YT2GReKKy0P0PUiWzfGNNhtaFJobmAJA2Q7gm9-xv6-WcQupzg0dvDNfGW3POT4-7VhXEHz11K-oI_B9gW-vpyH6G7x43Z-Mbu6Pr-cn13NXMvEOHOMtjgI7XHogtaEaAxECtpqXoMKtei1Bcs6KzV32CrssOy0l8IBMM8O0eXO65Ndm4ccNzb_MslG85xIeWlsHqPrwUilKaktHVaSawaqpSRY6QLxNdOy6jrduR6mbgPewTBm27-Rvq0McWWW6cmolmOlcRWcvAhyepygjGYTi4O-twOkqZg6EZeKCykqevwfuk5THupXPVN1et3SSpEd5XIqJUN4fQzBZrt682717A9EVqIm</recordid><startdate>20211019</startdate><enddate>20211019</enddate><creator>Aoki, Masaaki</creator><creator>Masuda, Yu</creator><creator>Ishikawa, Kota</creator><creator>Tamada, Yasushi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211019</creationdate><title>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</title><author>Aoki, Masaaki ; Masuda, Yu ; Ishikawa, Kota ; Tamada, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium</topic><topic>Ammonium sulfate</topic><topic>Aqueous solutions</topic><topic>Cell proliferation</topic><topic>Cellulose</topic><topic>Degumming</topic><topic>Dialysis</topic><topic>Electrophoresis</topic><topic>Fractionation</topic><topic>Fractions</topic><topic>Gel electrophoresis</topic><topic>Hemodialysis</topic><topic>Influence</topic><topic>Liquid chromatography</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Molecular weight</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>Physical properties</topic><topic>Polyacrylamide</topic><topic>Polyethylene</topic><topic>Polymer blends</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>porous structure</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Rheology</topic><topic>Secondary structure</topic><topic>Silk fibroin</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Masaaki</creatorcontrib><creatorcontrib>Masuda, Yu</creatorcontrib><creatorcontrib>Ishikawa, Kota</creatorcontrib><creatorcontrib>Tamada, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Masaaki</au><au>Masuda, Yu</au><au>Ishikawa, Kota</au><au>Tamada, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2021-10-19</date><risdate>2021</risdate><volume>26</volume><issue>20</issue><spage>6317</spage><pages>6317-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34684897</pmid><doi>10.3390/molecules26206317</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2021-10, Vol.26 (20), p.6317 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_789213d3b087493e8521fa7cf1d08753 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Ammonium Ammonium sulfate Aqueous solutions Cell proliferation Cellulose Degumming Dialysis Electrophoresis Fractionation Fractions Gel electrophoresis Hemodialysis Influence Liquid chromatography Low temperature Mechanical properties Methods Molecular weight nanofiber Nanofibers Physical properties Polyacrylamide Polyethylene Polymer blends Polymer melts Polymers porous structure Protein structure Proteins Rheology Secondary structure Silk fibroin Surface properties |
title | Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractionation%20of%20Regenerated%20Silk%20Fibroin%20and%20Characterization%20of%20the%20Fractions&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Aoki,%20Masaaki&rft.date=2021-10-19&rft.volume=26&rft.issue=20&rft.spage=6317&rft.pages=6317-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26206317&rft_dat=%3Cproquest_doaj_%3E2584784676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-c3250f69d0fbf991190e17625946258f50fd9aea3ba794c0a80c07b9d76cee3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584462952&rft_id=info:pmid/34684897&rfr_iscdi=true |