Loading…
Temporal Graph Super Resolution on Power Distribution Network Measurements
The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenar...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.70628-70638 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53 |
container_end_page | 70638 |
container_issue | |
container_start_page | 70628 |
container_title | IEEE access |
container_volume | 9 |
creator | Wang, Zhisheng Chen, Ying Huang, Shaowei Zhang, Xuemin Liu, Xiaopeng |
description | The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security & stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures. |
doi_str_mv | 10.1109/ACCESS.2021.3054034 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9335015</ieee_id><doaj_id>oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3</doaj_id><sourcerecordid>2528946187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</originalsourceid><addsrcrecordid>eNpNUV1rwkAQDKWFivUX-BLos_a-c3kUa63FflB9Py53mzZWvfQuQfrvezYiXRZ2GXZmByZJhhiNMUb53WQ6na1WY4IIHlPEGaLsIukRLPIR5VRc_tuvk0EIGxRLRohnveRpDbvaeb1N517Xn-mqrcGn7xDctm0qt09jv7lDxO6r0Piq6NAXaA7Of6XPoEPrYQf7JtwkV6XeBhicZj9ZP8zW08fR8nW-mE6WI8OQbEYWsgJhRnJJhCFMY8IJYMORyailOZM2s1ZLTXmmCciCUyIkCFwKJkrLaT9ZdLLW6Y2qfbXT_kc5Xak_wPkPpX1TmS2oTGpieFRjhDCLcF7mHHBGhS4MMpZGrdtOq_buu4XQqI1r_T66V9GVzJnAMotXtLsy3oXgoTx_xUgdI1BdBOoYgTpFEFnDjlUBwJmRU8oR5vQXj4CBiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528946187</pqid></control><display><type>article</type><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</creator><creatorcontrib>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</creatorcontrib><description>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security & stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054034</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Electric power distribution ; Feeders ; Flow stability ; graph convolution ; Industrial applications ; Power distribution ; power distribution network ; Power flow ; Power measurement ; Power systems ; Sensors ; State estimation ; Super resolution ; Superresolution ; Thermal sensors ; Topology ; Voltage measurement</subject><ispartof>IEEE access, 2021, Vol.9, p.70628-70638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</citedby><cites>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</cites><orcidid>0000-0001-7379-5025 ; 0000-0003-0679-5927 ; 0000-0003-2301-5769 ; 0000-0002-2907-755X ; 0000-0001-9246-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9335015$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Zhisheng</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Huang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Xuemin</creatorcontrib><creatorcontrib>Liu, Xiaopeng</creatorcontrib><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><title>IEEE access</title><addtitle>Access</addtitle><description>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security & stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Electric power distribution</subject><subject>Feeders</subject><subject>Flow stability</subject><subject>graph convolution</subject><subject>Industrial applications</subject><subject>Power distribution</subject><subject>power distribution network</subject><subject>Power flow</subject><subject>Power measurement</subject><subject>Power systems</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Super resolution</subject><subject>Superresolution</subject><subject>Thermal sensors</subject><subject>Topology</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rwkAQDKWFivUX-BLos_a-c3kUa63FflB9Py53mzZWvfQuQfrvezYiXRZ2GXZmByZJhhiNMUb53WQ6na1WY4IIHlPEGaLsIukRLPIR5VRc_tuvk0EIGxRLRohnveRpDbvaeb1N517Xn-mqrcGn7xDctm0qt09jv7lDxO6r0Piq6NAXaA7Of6XPoEPrYQf7JtwkV6XeBhicZj9ZP8zW08fR8nW-mE6WI8OQbEYWsgJhRnJJhCFMY8IJYMORyailOZM2s1ZLTXmmCciCUyIkCFwKJkrLaT9ZdLLW6Y2qfbXT_kc5Xak_wPkPpX1TmS2oTGpieFRjhDCLcF7mHHBGhS4MMpZGrdtOq_buu4XQqI1r_T66V9GVzJnAMotXtLsy3oXgoTx_xUgdI1BdBOoYgTpFEFnDjlUBwJmRU8oR5vQXj4CBiQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Zhisheng</creator><creator>Chen, Ying</creator><creator>Huang, Shaowei</creator><creator>Zhang, Xuemin</creator><creator>Liu, Xiaopeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7379-5025</orcidid><orcidid>https://orcid.org/0000-0003-0679-5927</orcidid><orcidid>https://orcid.org/0000-0003-2301-5769</orcidid><orcidid>https://orcid.org/0000-0002-2907-755X</orcidid><orcidid>https://orcid.org/0000-0001-9246-1397</orcidid></search><sort><creationdate>2021</creationdate><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><author>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Electric power distribution</topic><topic>Feeders</topic><topic>Flow stability</topic><topic>graph convolution</topic><topic>Industrial applications</topic><topic>Power distribution</topic><topic>power distribution network</topic><topic>Power flow</topic><topic>Power measurement</topic><topic>Power systems</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Super resolution</topic><topic>Superresolution</topic><topic>Thermal sensors</topic><topic>Topology</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhisheng</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Huang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Xuemin</creatorcontrib><creatorcontrib>Liu, Xiaopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhisheng</au><au>Chen, Ying</au><au>Huang, Shaowei</au><au>Zhang, Xuemin</au><au>Liu, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal Graph Super Resolution on Power Distribution Network Measurements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>70628</spage><epage>70638</epage><pages>70628-70638</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security & stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7379-5025</orcidid><orcidid>https://orcid.org/0000-0003-0679-5927</orcidid><orcidid>https://orcid.org/0000-0003-2301-5769</orcidid><orcidid>https://orcid.org/0000-0002-2907-755X</orcidid><orcidid>https://orcid.org/0000-0001-9246-1397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.70628-70638 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3 |
source | IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Convolution Electric power distribution Feeders Flow stability graph convolution Industrial applications Power distribution power distribution network Power flow Power measurement Power systems Sensors State estimation Super resolution Superresolution Thermal sensors Topology Voltage measurement |
title | Temporal Graph Super Resolution on Power Distribution Network Measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20Graph%20Super%20Resolution%20on%20Power%20Distribution%20Network%20Measurements&rft.jtitle=IEEE%20access&rft.au=Wang,%20Zhisheng&rft.date=2021&rft.volume=9&rft.spage=70628&rft.epage=70638&rft.pages=70628-70638&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054034&rft_dat=%3Cproquest_doaj_%3E2528946187%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528946187&rft_id=info:pmid/&rft_ieee_id=9335015&rfr_iscdi=true |