Loading…

Temporal Graph Super Resolution on Power Distribution Network Measurements

The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.70628-70638
Main Authors: Wang, Zhisheng, Chen, Ying, Huang, Shaowei, Zhang, Xuemin, Liu, Xiaopeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53
cites cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53
container_end_page 70638
container_issue
container_start_page 70628
container_title IEEE access
container_volume 9
creator Wang, Zhisheng
Chen, Ying
Huang, Shaowei
Zhang, Xuemin
Liu, Xiaopeng
description The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security & stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.
doi_str_mv 10.1109/ACCESS.2021.3054034
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9335015</ieee_id><doaj_id>oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3</doaj_id><sourcerecordid>2528946187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</originalsourceid><addsrcrecordid>eNpNUV1rwkAQDKWFivUX-BLos_a-c3kUa63FflB9Py53mzZWvfQuQfrvezYiXRZ2GXZmByZJhhiNMUb53WQ6na1WY4IIHlPEGaLsIukRLPIR5VRc_tuvk0EIGxRLRohnveRpDbvaeb1N517Xn-mqrcGn7xDctm0qt09jv7lDxO6r0Piq6NAXaA7Of6XPoEPrYQf7JtwkV6XeBhicZj9ZP8zW08fR8nW-mE6WI8OQbEYWsgJhRnJJhCFMY8IJYMORyailOZM2s1ZLTXmmCciCUyIkCFwKJkrLaT9ZdLLW6Y2qfbXT_kc5Xak_wPkPpX1TmS2oTGpieFRjhDCLcF7mHHBGhS4MMpZGrdtOq_buu4XQqI1r_T66V9GVzJnAMotXtLsy3oXgoTx_xUgdI1BdBOoYgTpFEFnDjlUBwJmRU8oR5vQXj4CBiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528946187</pqid></control><display><type>article</type><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</creator><creatorcontrib>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</creatorcontrib><description>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security &amp; stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054034</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Electric power distribution ; Feeders ; Flow stability ; graph convolution ; Industrial applications ; Power distribution ; power distribution network ; Power flow ; Power measurement ; Power systems ; Sensors ; State estimation ; Super resolution ; Superresolution ; Thermal sensors ; Topology ; Voltage measurement</subject><ispartof>IEEE access, 2021, Vol.9, p.70628-70638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</citedby><cites>FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</cites><orcidid>0000-0001-7379-5025 ; 0000-0003-0679-5927 ; 0000-0003-2301-5769 ; 0000-0002-2907-755X ; 0000-0001-9246-1397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9335015$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Zhisheng</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Huang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Xuemin</creatorcontrib><creatorcontrib>Liu, Xiaopeng</creatorcontrib><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><title>IEEE access</title><addtitle>Access</addtitle><description>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security &amp; stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Electric power distribution</subject><subject>Feeders</subject><subject>Flow stability</subject><subject>graph convolution</subject><subject>Industrial applications</subject><subject>Power distribution</subject><subject>power distribution network</subject><subject>Power flow</subject><subject>Power measurement</subject><subject>Power systems</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Super resolution</subject><subject>Superresolution</subject><subject>Thermal sensors</subject><subject>Topology</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rwkAQDKWFivUX-BLos_a-c3kUa63FflB9Py53mzZWvfQuQfrvezYiXRZ2GXZmByZJhhiNMUb53WQ6na1WY4IIHlPEGaLsIukRLPIR5VRc_tuvk0EIGxRLRohnveRpDbvaeb1N517Xn-mqrcGn7xDctm0qt09jv7lDxO6r0Piq6NAXaA7Of6XPoEPrYQf7JtwkV6XeBhicZj9ZP8zW08fR8nW-mE6WI8OQbEYWsgJhRnJJhCFMY8IJYMORyailOZM2s1ZLTXmmCciCUyIkCFwKJkrLaT9ZdLLW6Y2qfbXT_kc5Xak_wPkPpX1TmS2oTGpieFRjhDCLcF7mHHBGhS4MMpZGrdtOq_buu4XQqI1r_T66V9GVzJnAMotXtLsy3oXgoTx_xUgdI1BdBOoYgTpFEFnDjlUBwJmRU8oR5vQXj4CBiQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Zhisheng</creator><creator>Chen, Ying</creator><creator>Huang, Shaowei</creator><creator>Zhang, Xuemin</creator><creator>Liu, Xiaopeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7379-5025</orcidid><orcidid>https://orcid.org/0000-0003-0679-5927</orcidid><orcidid>https://orcid.org/0000-0003-2301-5769</orcidid><orcidid>https://orcid.org/0000-0002-2907-755X</orcidid><orcidid>https://orcid.org/0000-0001-9246-1397</orcidid></search><sort><creationdate>2021</creationdate><title>Temporal Graph Super Resolution on Power Distribution Network Measurements</title><author>Wang, Zhisheng ; Chen, Ying ; Huang, Shaowei ; Zhang, Xuemin ; Liu, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Electric power distribution</topic><topic>Feeders</topic><topic>Flow stability</topic><topic>graph convolution</topic><topic>Industrial applications</topic><topic>Power distribution</topic><topic>power distribution network</topic><topic>Power flow</topic><topic>Power measurement</topic><topic>Power systems</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Super resolution</topic><topic>Superresolution</topic><topic>Thermal sensors</topic><topic>Topology</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhisheng</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Huang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Xuemin</creatorcontrib><creatorcontrib>Liu, Xiaopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhisheng</au><au>Chen, Ying</au><au>Huang, Shaowei</au><au>Zhang, Xuemin</au><au>Liu, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal Graph Super Resolution on Power Distribution Network Measurements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>70628</spage><epage>70638</epage><pages>70628-70638</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The applications of super-resolution (SR) technology in the field of image completion are successful. Nevertheless, industry applications demand not only image completion but also the topology and time-series completion. In this article, the SR technology on a topology graph is studied in the scenario of recovering measurements in power distribution systems for cost saving and security &amp; stability improvement. The power flow and voltage magnitude measurements on feeders are reported at different frequencies. In this article, a new data completion method considering distribution system topology is proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This method realizes the super-resolution of distribution system measurements, improves the state awareness of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to reduce equipment failures.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7379-5025</orcidid><orcidid>https://orcid.org/0000-0003-0679-5927</orcidid><orcidid>https://orcid.org/0000-0003-2301-5769</orcidid><orcidid>https://orcid.org/0000-0002-2907-755X</orcidid><orcidid>https://orcid.org/0000-0001-9246-1397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.70628-70638
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_78a2c5dda4224d019f95e1736abc0cd3
source IEEE Xplore Open Access Journals
subjects Artificial neural networks
Convolution
Electric power distribution
Feeders
Flow stability
graph convolution
Industrial applications
Power distribution
power distribution network
Power flow
Power measurement
Power systems
Sensors
State estimation
Super resolution
Superresolution
Thermal sensors
Topology
Voltage measurement
title Temporal Graph Super Resolution on Power Distribution Network Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20Graph%20Super%20Resolution%20on%20Power%20Distribution%20Network%20Measurements&rft.jtitle=IEEE%20access&rft.au=Wang,%20Zhisheng&rft.date=2021&rft.volume=9&rft.spage=70628&rft.epage=70638&rft.pages=70628-70638&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054034&rft_dat=%3Cproquest_doaj_%3E2528946187%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-de7b01429826c24a1252e1c50c73d3948d7dda8a357a2e8b53268e61f646fd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528946187&rft_id=info:pmid/&rft_ieee_id=9335015&rfr_iscdi=true