Loading…
P2X4 receptor-eNOS signaling pathway in cardiac myocytes as a novel protective mechanism in heart failure
We have demonstrated using immunoprecipitation and immunostaining a novel physical association of the P2X4 receptor (P2X4R), a ligand-gated ion channel, with the cardioprotective, calcium-dependent enzyme endothelial nitric oxide synthase (eNOS). Treatment of murine ventricular myocytes with the P2X...
Saved in:
Published in: | Computational and structural biotechnology journal 2015-01, Vol.13 (C), p.1-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have demonstrated using immunoprecipitation and immunostaining a novel physical association of the P2X4 receptor (P2X4R), a ligand-gated ion channel, with the cardioprotective, calcium-dependent enzyme endothelial nitric oxide synthase (eNOS). Treatment of murine ventricular myocytes with the P2XR agonist 2-methylthioATP (2-meSATP) to induce a current (mainly Na(+)) increased the formation of nitric oxide (NO), as measured using a fluorescent probe. Possible candidates for downstream effectors mediating eNOS activity include cyclic GMP and PKG or cellular protein nitrosylation. A cardiac-specific P2X4R overexpressing mouse line was protected from heart failure (HF) with improved cardiac function and survival in post-infarct, pressure overload, and calsequestrin (CSQ) overexpression models of HF. Although the role of the P2X4R in other tissues such as the endothelium and monocytes awaits characterization in tissue-specific KO, cardiac-specific activation of eNOS may be more cardioprotective than an increased activity of global systemic eNOS. The intra-myocyte formation of NO may be more advantageous over NO derived externally from a donor. A small molecule drug stimulating this sarcolemmal pathway or gene therapy-mediated overexpression of the P2X4R in cardiac myocytes may represent a new therapy for both ischemic and pressure overloaded HF. |
---|---|
ISSN: | 2001-0370 2001-0370 |
DOI: | 10.1016/j.csbj.2014.11.002 |