Loading…

Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls

Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions....

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2023-08, Vol.14, p.1198860-1198860
Main Authors: Räuber, Saskia, Nelke, Christopher, Schroeter, Christina B, Barman, Sumanta, Pawlitzki, Marc, Ingwersen, Jens, Akgün, Katja, Günther, Rene, Garza, Alejandra P, Marggraf, Michaela, Dunay, Ildiko Rita, Schreiber, Stefanie, Vielhaber, Stefan, Ziemssen, Tjalf, Melzer, Nico, Ruck, Tobias, Meuth, Sven G, Herty, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653
container_end_page 1198860
container_issue
container_start_page 1198860
container_title Frontiers in immunology
container_volume 14
creator Räuber, Saskia
Nelke, Christopher
Schroeter, Christina B
Barman, Sumanta
Pawlitzki, Marc
Ingwersen, Jens
Akgün, Katja
Günther, Rene
Garza, Alejandra P
Marggraf, Michaela
Dunay, Ildiko Rita
Schreiber, Stefanie
Vielhaber, Stefan
Ziemssen, Tjalf
Melzer, Nico
Ruck, Tobias
Meuth, Sven G
Herty, Michael
description Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches. Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree. Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data. Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.
doi_str_mv 10.3389/fimmu.2023.1198860
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab</doaj_id><sourcerecordid>2854350634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</originalsourceid><addsrcrecordid>eNpVkUtvEzEUhUcIRKvSP8ACeckmqd_jWaES8agUiQWwtu547MSVZxxsD2j-PU6TVq031_I95_O9Ok3znuA1Y6q7cX4c5zXFlK0J6ZSS-FVzSaTkK0Ypf_3sftFc53yP6-EdY0y8bS5YKzFWpLts4iZAzt4tftohF-I_ZJYSR1vSggYogOZ87HyGxWYPE4IJwpJ9RnsbDhmViAafS5XMPu_R7fYnOkDxdioZuRTHKoNQ9gsycSophvyueeMgZHt9rlfN769ffm2-r7Y_vt1tbrcrwykuKy5FKyQndqDQK86ckq6zyvRGSYMdh44JaoVlXIiW9BycVINqARjlpJrZVXN34g4R7vUh-RHSoiN4_fAQ005DKt4Eq1vVYywdkLYX3A2gzND2lBAuBmkI9JX16cQ6zP1oB1O3SxBeQF92Jr_Xu_hXE8zrgExWwsczIcU_s81Fjz4bGwJMNs5ZUyU4E1gyXqX0JDUp5pyse_qHYH1MXj8kr4_J63Py1fTh-YRPlsec2X_eeK1V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854350634</pqid></control><display><type>article</type><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><source>PubMed Central Free</source><creator>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</creator><creatorcontrib>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</creatorcontrib><description>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches. Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree. Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p &lt; 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data. Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2023.1198860</identifier><identifier>PMID: 37600819</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Algorithms ; ALS ; Amyotrophic Lateral Sclerosis - diagnosis ; Bayes Theorem ; Bayesian analysis ; Female ; flow cytometry ; Flow Cytometry - classification ; Flow Cytometry - methods ; Humans ; immune system ; Immunology ; Male ; mathematical modeling ; Middle Aged ; Models, Theoretical</subject><ispartof>Frontiers in immunology, 2023-08, Vol.14, p.1198860-1198860</ispartof><rights>Copyright © 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty.</rights><rights>Copyright © 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37600819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Räuber, Saskia</creatorcontrib><creatorcontrib>Nelke, Christopher</creatorcontrib><creatorcontrib>Schroeter, Christina B</creatorcontrib><creatorcontrib>Barman, Sumanta</creatorcontrib><creatorcontrib>Pawlitzki, Marc</creatorcontrib><creatorcontrib>Ingwersen, Jens</creatorcontrib><creatorcontrib>Akgün, Katja</creatorcontrib><creatorcontrib>Günther, Rene</creatorcontrib><creatorcontrib>Garza, Alejandra P</creatorcontrib><creatorcontrib>Marggraf, Michaela</creatorcontrib><creatorcontrib>Dunay, Ildiko Rita</creatorcontrib><creatorcontrib>Schreiber, Stefanie</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Melzer, Nico</creatorcontrib><creatorcontrib>Ruck, Tobias</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Herty, Michael</creatorcontrib><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><title>Frontiers in immunology</title><addtitle>Front Immunol</addtitle><description>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches. Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree. Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p &lt; 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data. Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - diagnosis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Female</subject><subject>flow cytometry</subject><subject>Flow Cytometry - classification</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>immune system</subject><subject>Immunology</subject><subject>Male</subject><subject>mathematical modeling</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtvEzEUhUcIRKvSP8ACeckmqd_jWaES8agUiQWwtu547MSVZxxsD2j-PU6TVq031_I95_O9Ok3znuA1Y6q7cX4c5zXFlK0J6ZSS-FVzSaTkK0Ypf_3sftFc53yP6-EdY0y8bS5YKzFWpLts4iZAzt4tftohF-I_ZJYSR1vSggYogOZ87HyGxWYPE4IJwpJ9RnsbDhmViAafS5XMPu_R7fYnOkDxdioZuRTHKoNQ9gsycSophvyueeMgZHt9rlfN769ffm2-r7Y_vt1tbrcrwykuKy5FKyQndqDQK86ckq6zyvRGSYMdh44JaoVlXIiW9BycVINqARjlpJrZVXN34g4R7vUh-RHSoiN4_fAQ005DKt4Eq1vVYywdkLYX3A2gzND2lBAuBmkI9JX16cQ6zP1oB1O3SxBeQF92Jr_Xu_hXE8zrgExWwsczIcU_s81Fjz4bGwJMNs5ZUyU4E1gyXqX0JDUp5pyse_qHYH1MXj8kr4_J63Py1fTh-YRPlsec2X_eeK1V</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Räuber, Saskia</creator><creator>Nelke, Christopher</creator><creator>Schroeter, Christina B</creator><creator>Barman, Sumanta</creator><creator>Pawlitzki, Marc</creator><creator>Ingwersen, Jens</creator><creator>Akgün, Katja</creator><creator>Günther, Rene</creator><creator>Garza, Alejandra P</creator><creator>Marggraf, Michaela</creator><creator>Dunay, Ildiko Rita</creator><creator>Schreiber, Stefanie</creator><creator>Vielhaber, Stefan</creator><creator>Ziemssen, Tjalf</creator><creator>Melzer, Nico</creator><creator>Ruck, Tobias</creator><creator>Meuth, Sven G</creator><creator>Herty, Michael</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230801</creationdate><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><author>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - diagnosis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Female</topic><topic>flow cytometry</topic><topic>Flow Cytometry - classification</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>immune system</topic><topic>Immunology</topic><topic>Male</topic><topic>mathematical modeling</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räuber, Saskia</creatorcontrib><creatorcontrib>Nelke, Christopher</creatorcontrib><creatorcontrib>Schroeter, Christina B</creatorcontrib><creatorcontrib>Barman, Sumanta</creatorcontrib><creatorcontrib>Pawlitzki, Marc</creatorcontrib><creatorcontrib>Ingwersen, Jens</creatorcontrib><creatorcontrib>Akgün, Katja</creatorcontrib><creatorcontrib>Günther, Rene</creatorcontrib><creatorcontrib>Garza, Alejandra P</creatorcontrib><creatorcontrib>Marggraf, Michaela</creatorcontrib><creatorcontrib>Dunay, Ildiko Rita</creatorcontrib><creatorcontrib>Schreiber, Stefanie</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Melzer, Nico</creatorcontrib><creatorcontrib>Ruck, Tobias</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Herty, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räuber, Saskia</au><au>Nelke, Christopher</au><au>Schroeter, Christina B</au><au>Barman, Sumanta</au><au>Pawlitzki, Marc</au><au>Ingwersen, Jens</au><au>Akgün, Katja</au><au>Günther, Rene</au><au>Garza, Alejandra P</au><au>Marggraf, Michaela</au><au>Dunay, Ildiko Rita</au><au>Schreiber, Stefanie</au><au>Vielhaber, Stefan</au><au>Ziemssen, Tjalf</au><au>Melzer, Nico</au><au>Ruck, Tobias</au><au>Meuth, Sven G</au><au>Herty, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</atitle><jtitle>Frontiers in immunology</jtitle><addtitle>Front Immunol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><spage>1198860</spage><epage>1198860</epage><pages>1198860-1198860</pages><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches. Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree. Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p &lt; 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data. Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37600819</pmid><doi>10.3389/fimmu.2023.1198860</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-3224
ispartof Frontiers in immunology, 2023-08, Vol.14, p.1198860-1198860
issn 1664-3224
1664-3224
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab
source PubMed Central Free
subjects Adult
Aged
Aged, 80 and over
Algorithms
ALS
Amyotrophic Lateral Sclerosis - diagnosis
Bayes Theorem
Bayesian analysis
Female
flow cytometry
Flow Cytometry - classification
Flow Cytometry - methods
Humans
immune system
Immunology
Male
mathematical modeling
Middle Aged
Models, Theoretical
title Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20flow%20cytometry%20data%20using%20Bayesian%20analysis%20helps%20to%20distinguish%20ALS%20patients%20from%20healthy%20controls&rft.jtitle=Frontiers%20in%20immunology&rft.au=R%C3%A4uber,%20Saskia&rft.date=2023-08-01&rft.volume=14&rft.spage=1198860&rft.epage=1198860&rft.pages=1198860-1198860&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2023.1198860&rft_dat=%3Cproquest_doaj_%3E2854350634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854350634&rft_id=info:pmid/37600819&rfr_iscdi=true