Loading…
Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls
Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions....
Saved in:
Published in: | Frontiers in immunology 2023-08, Vol.14, p.1198860-1198860 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653 |
container_end_page | 1198860 |
container_issue | |
container_start_page | 1198860 |
container_title | Frontiers in immunology |
container_volume | 14 |
creator | Räuber, Saskia Nelke, Christopher Schroeter, Christina B Barman, Sumanta Pawlitzki, Marc Ingwersen, Jens Akgün, Katja Günther, Rene Garza, Alejandra P Marggraf, Michaela Dunay, Ildiko Rita Schreiber, Stefanie Vielhaber, Stefan Ziemssen, Tjalf Melzer, Nico Ruck, Tobias Meuth, Sven G Herty, Michael |
description | Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches.
Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree.
Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data.
Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup. |
doi_str_mv | 10.3389/fimmu.2023.1198860 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab</doaj_id><sourcerecordid>2854350634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</originalsourceid><addsrcrecordid>eNpVkUtvEzEUhUcIRKvSP8ACeckmqd_jWaES8agUiQWwtu547MSVZxxsD2j-PU6TVq031_I95_O9Ok3znuA1Y6q7cX4c5zXFlK0J6ZSS-FVzSaTkK0Ypf_3sftFc53yP6-EdY0y8bS5YKzFWpLts4iZAzt4tftohF-I_ZJYSR1vSggYogOZ87HyGxWYPE4IJwpJ9RnsbDhmViAafS5XMPu_R7fYnOkDxdioZuRTHKoNQ9gsycSophvyueeMgZHt9rlfN769ffm2-r7Y_vt1tbrcrwykuKy5FKyQndqDQK86ckq6zyvRGSYMdh44JaoVlXIiW9BycVINqARjlpJrZVXN34g4R7vUh-RHSoiN4_fAQ005DKt4Eq1vVYywdkLYX3A2gzND2lBAuBmkI9JX16cQ6zP1oB1O3SxBeQF92Jr_Xu_hXE8zrgExWwsczIcU_s81Fjz4bGwJMNs5ZUyU4E1gyXqX0JDUp5pyse_qHYH1MXj8kr4_J63Py1fTh-YRPlsec2X_eeK1V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854350634</pqid></control><display><type>article</type><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><source>PubMed Central Free</source><creator>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</creator><creatorcontrib>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</creatorcontrib><description>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches.
Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree.
Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data.
Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2023.1198860</identifier><identifier>PMID: 37600819</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Algorithms ; ALS ; Amyotrophic Lateral Sclerosis - diagnosis ; Bayes Theorem ; Bayesian analysis ; Female ; flow cytometry ; Flow Cytometry - classification ; Flow Cytometry - methods ; Humans ; immune system ; Immunology ; Male ; mathematical modeling ; Middle Aged ; Models, Theoretical</subject><ispartof>Frontiers in immunology, 2023-08, Vol.14, p.1198860-1198860</ispartof><rights>Copyright © 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty.</rights><rights>Copyright © 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty 2023 Räuber, Nelke, Schroeter, Barman, Pawlitzki, Ingwersen, Akgün, Günther, Garza, Marggraf, Dunay, Schreiber, Vielhaber, Ziemssen, Melzer, Ruck, Meuth and Herty</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37600819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Räuber, Saskia</creatorcontrib><creatorcontrib>Nelke, Christopher</creatorcontrib><creatorcontrib>Schroeter, Christina B</creatorcontrib><creatorcontrib>Barman, Sumanta</creatorcontrib><creatorcontrib>Pawlitzki, Marc</creatorcontrib><creatorcontrib>Ingwersen, Jens</creatorcontrib><creatorcontrib>Akgün, Katja</creatorcontrib><creatorcontrib>Günther, Rene</creatorcontrib><creatorcontrib>Garza, Alejandra P</creatorcontrib><creatorcontrib>Marggraf, Michaela</creatorcontrib><creatorcontrib>Dunay, Ildiko Rita</creatorcontrib><creatorcontrib>Schreiber, Stefanie</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Melzer, Nico</creatorcontrib><creatorcontrib>Ruck, Tobias</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Herty, Michael</creatorcontrib><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><title>Frontiers in immunology</title><addtitle>Front Immunol</addtitle><description>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches.
Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree.
Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data.
Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - diagnosis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Female</subject><subject>flow cytometry</subject><subject>Flow Cytometry - classification</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>immune system</subject><subject>Immunology</subject><subject>Male</subject><subject>mathematical modeling</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtvEzEUhUcIRKvSP8ACeckmqd_jWaES8agUiQWwtu547MSVZxxsD2j-PU6TVq031_I95_O9Ok3znuA1Y6q7cX4c5zXFlK0J6ZSS-FVzSaTkK0Ypf_3sftFc53yP6-EdY0y8bS5YKzFWpLts4iZAzt4tftohF-I_ZJYSR1vSggYogOZ87HyGxWYPE4IJwpJ9RnsbDhmViAafS5XMPu_R7fYnOkDxdioZuRTHKoNQ9gsycSophvyueeMgZHt9rlfN769ffm2-r7Y_vt1tbrcrwykuKy5FKyQndqDQK86ckq6zyvRGSYMdh44JaoVlXIiW9BycVINqARjlpJrZVXN34g4R7vUh-RHSoiN4_fAQ005DKt4Eq1vVYywdkLYX3A2gzND2lBAuBmkI9JX16cQ6zP1oB1O3SxBeQF92Jr_Xu_hXE8zrgExWwsczIcU_s81Fjz4bGwJMNs5ZUyU4E1gyXqX0JDUp5pyse_qHYH1MXj8kr4_J63Py1fTh-YRPlsec2X_eeK1V</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Räuber, Saskia</creator><creator>Nelke, Christopher</creator><creator>Schroeter, Christina B</creator><creator>Barman, Sumanta</creator><creator>Pawlitzki, Marc</creator><creator>Ingwersen, Jens</creator><creator>Akgün, Katja</creator><creator>Günther, Rene</creator><creator>Garza, Alejandra P</creator><creator>Marggraf, Michaela</creator><creator>Dunay, Ildiko Rita</creator><creator>Schreiber, Stefanie</creator><creator>Vielhaber, Stefan</creator><creator>Ziemssen, Tjalf</creator><creator>Melzer, Nico</creator><creator>Ruck, Tobias</creator><creator>Meuth, Sven G</creator><creator>Herty, Michael</creator><general>Frontiers Media S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230801</creationdate><title>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</title><author>Räuber, Saskia ; Nelke, Christopher ; Schroeter, Christina B ; Barman, Sumanta ; Pawlitzki, Marc ; Ingwersen, Jens ; Akgün, Katja ; Günther, Rene ; Garza, Alejandra P ; Marggraf, Michaela ; Dunay, Ildiko Rita ; Schreiber, Stefanie ; Vielhaber, Stefan ; Ziemssen, Tjalf ; Melzer, Nico ; Ruck, Tobias ; Meuth, Sven G ; Herty, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - diagnosis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Female</topic><topic>flow cytometry</topic><topic>Flow Cytometry - classification</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>immune system</topic><topic>Immunology</topic><topic>Male</topic><topic>mathematical modeling</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räuber, Saskia</creatorcontrib><creatorcontrib>Nelke, Christopher</creatorcontrib><creatorcontrib>Schroeter, Christina B</creatorcontrib><creatorcontrib>Barman, Sumanta</creatorcontrib><creatorcontrib>Pawlitzki, Marc</creatorcontrib><creatorcontrib>Ingwersen, Jens</creatorcontrib><creatorcontrib>Akgün, Katja</creatorcontrib><creatorcontrib>Günther, Rene</creatorcontrib><creatorcontrib>Garza, Alejandra P</creatorcontrib><creatorcontrib>Marggraf, Michaela</creatorcontrib><creatorcontrib>Dunay, Ildiko Rita</creatorcontrib><creatorcontrib>Schreiber, Stefanie</creatorcontrib><creatorcontrib>Vielhaber, Stefan</creatorcontrib><creatorcontrib>Ziemssen, Tjalf</creatorcontrib><creatorcontrib>Melzer, Nico</creatorcontrib><creatorcontrib>Ruck, Tobias</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Herty, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räuber, Saskia</au><au>Nelke, Christopher</au><au>Schroeter, Christina B</au><au>Barman, Sumanta</au><au>Pawlitzki, Marc</au><au>Ingwersen, Jens</au><au>Akgün, Katja</au><au>Günther, Rene</au><au>Garza, Alejandra P</au><au>Marggraf, Michaela</au><au>Dunay, Ildiko Rita</au><au>Schreiber, Stefanie</au><au>Vielhaber, Stefan</au><au>Ziemssen, Tjalf</au><au>Melzer, Nico</au><au>Ruck, Tobias</au><au>Meuth, Sven G</au><au>Herty, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls</atitle><jtitle>Frontiers in immunology</jtitle><addtitle>Front Immunol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><spage>1198860</spage><epage>1198860</epage><pages>1198860-1198860</pages><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches.
Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree.
Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data.
Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37600819</pmid><doi>10.3389/fimmu.2023.1198860</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-3224 |
ispartof | Frontiers in immunology, 2023-08, Vol.14, p.1198860-1198860 |
issn | 1664-3224 1664-3224 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_78b006fa17b54fda8cd7b21145d6c1ab |
source | PubMed Central Free |
subjects | Adult Aged Aged, 80 and over Algorithms ALS Amyotrophic Lateral Sclerosis - diagnosis Bayes Theorem Bayesian analysis Female flow cytometry Flow Cytometry - classification Flow Cytometry - methods Humans immune system Immunology Male mathematical modeling Middle Aged Models, Theoretical |
title | Classifying flow cytometry data using Bayesian analysis helps to distinguish ALS patients from healthy controls |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifying%20flow%20cytometry%20data%20using%20Bayesian%20analysis%20helps%20to%20distinguish%20ALS%20patients%20from%20healthy%20controls&rft.jtitle=Frontiers%20in%20immunology&rft.au=R%C3%A4uber,%20Saskia&rft.date=2023-08-01&rft.volume=14&rft.spage=1198860&rft.epage=1198860&rft.pages=1198860-1198860&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2023.1198860&rft_dat=%3Cproquest_doaj_%3E2854350634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-46575641ed2ab843f86f9e8cbc86c0f4a9352e5e345571b4af68d87aa32414653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854350634&rft_id=info:pmid/37600819&rfr_iscdi=true |