Loading…

Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System

We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system ar...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Dynamics in Nature and Society 2015-01, Vol.2015 (2015), p.856-869-084
Main Authors: Liu, Zijian, Yang, Chenxue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3
cites cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3
container_end_page 869-084
container_issue 2015
container_start_page 856
container_title Discrete Dynamics in Nature and Society
container_volume 2015
creator Liu, Zijian
Yang, Chenxue
description We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.
doi_str_mv 10.1155/2015/293050
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510936576</galeid><airiti_id>P20160913003_201512_201611280050_201611280050_856_869_084</airiti_id><doaj_id>oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a</doaj_id><sourcerecordid>A510936576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4soeJ4--S4FX0TpOUmaNHk8Fn8srLqwp_gW0mS6l7Nt1qTrcf71ZrfiqS9KIMmEz_c7zGSK4jGBM0I4f0mB5E0x4HCnOCECmkrK5vPdfAcqKqBU3C8epHQFQEEqelJ8X2MczIijxdKMrsyhD87bchP6_eTDmMouxNKUF9ehWpvJXpbLYbfvk_-G5Tu_jeYA3creV5sdWo-pXIXpi6k-hX7CGE25CMMOJz8ddJubNOHwsLjXmT7ho5_nafHx9auLxdtq9eHNcnG-qgwXaqoaiV0Hrao717hcEafCKdIS25qGWYYtNIJ2ra0FBcsYcoZGOdk6IjoJ1LDTYjn7umCu9C76wcQbHYzXx4cQt9rEydse9SFXw6SsUdratUZZZ63FmghkbXf0ejZ77WL4usc06cEni32fWxj2SZNGCkq5EpDRp3-hV2Efx1xppjivJVM1z9TZTG1Nzu_HLkzR2LwcDt6GETuf3885AcUEb8T_CrJ1DVJwkgUvZoGNIaWI3a8WENCHqdGHqdHz1GT6-Uxf-tGZa_8P-MkMY0awM7_BAuojsJ4B42P--tsOrLONAEUYADtaEno4BCFUQrb-M5BcaCmUBlmzH0uM4Lk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755483945</pqid></control><display><type>article</type><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library</source><creator>Liu, Zijian ; Yang, Chenxue</creator><contributor>El-Morshedy, Hassan A.</contributor><creatorcontrib>Liu, Zijian ; Yang, Chenxue ; El-Morshedy, Hassan A.</creatorcontrib><description>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2015/293050</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Competition ; Dynamical systems ; Dynamics ; Extinction ; Inequalities ; Inequalities (Mathematics) ; Integral equations ; Lotka-Volterra equations ; Lyapunov functions ; Mathematical models ; Mathematical research ; Migration ; Periodic functions ; Predator-prey simulation ; Science ; Topological spaces ; Trends</subject><ispartof>Discrete Dynamics in Nature and Society, 2015-01, Vol.2015 (2015), p.856-869-084</ispartof><rights>Copyright © 2015 Zijian Liu and Chenxue Yang.</rights><rights>COPYRIGHT 2015 John Wiley &amp; Sons, Inc.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2015 Zijian Liu and Chenxue Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</citedby><cites>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1755483945/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1755483945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>El-Morshedy, Hassan A.</contributor><creatorcontrib>Liu, Zijian</creatorcontrib><creatorcontrib>Yang, Chenxue</creatorcontrib><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><title>Discrete Dynamics in Nature and Society</title><description>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</description><subject>Competition</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Extinction</subject><subject>Inequalities</subject><subject>Inequalities (Mathematics)</subject><subject>Integral equations</subject><subject>Lotka-Volterra equations</subject><subject>Lyapunov functions</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Migration</subject><subject>Periodic functions</subject><subject>Predator-prey simulation</subject><subject>Science</subject><subject>Topological spaces</subject><subject>Trends</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt-L1DAQx4soeJ4--S4FX0TpOUmaNHk8Fn8srLqwp_gW0mS6l7Nt1qTrcf71ZrfiqS9KIMmEz_c7zGSK4jGBM0I4f0mB5E0x4HCnOCECmkrK5vPdfAcqKqBU3C8epHQFQEEqelJ8X2MczIijxdKMrsyhD87bchP6_eTDmMouxNKUF9ehWpvJXpbLYbfvk_-G5Tu_jeYA3creV5sdWo-pXIXpi6k-hX7CGE25CMMOJz8ddJubNOHwsLjXmT7ho5_nafHx9auLxdtq9eHNcnG-qgwXaqoaiV0Hrao717hcEafCKdIS25qGWYYtNIJ2ra0FBcsYcoZGOdk6IjoJ1LDTYjn7umCu9C76wcQbHYzXx4cQt9rEydse9SFXw6SsUdratUZZZ63FmghkbXf0ejZ77WL4usc06cEni32fWxj2SZNGCkq5EpDRp3-hV2Efx1xppjivJVM1z9TZTG1Nzu_HLkzR2LwcDt6GETuf3885AcUEb8T_CrJ1DVJwkgUvZoGNIaWI3a8WENCHqdGHqdHz1GT6-Uxf-tGZa_8P-MkMY0awM7_BAuojsJ4B42P--tsOrLONAEUYADtaEno4BCFUQrb-M5BcaCmUBlmzH0uM4Lk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liu, Zijian</creator><creator>Yang, Chenxue</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20150101</creationdate><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><author>Liu, Zijian ; Yang, Chenxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Competition</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Extinction</topic><topic>Inequalities</topic><topic>Inequalities (Mathematics)</topic><topic>Integral equations</topic><topic>Lotka-Volterra equations</topic><topic>Lyapunov functions</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Migration</topic><topic>Periodic functions</topic><topic>Predator-prey simulation</topic><topic>Science</topic><topic>Topological spaces</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zijian</creatorcontrib><creatorcontrib>Yang, Chenxue</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discrete Dynamics in Nature and Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zijian</au><au>Yang, Chenxue</au><au>El-Morshedy, Hassan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</atitle><jtitle>Discrete Dynamics in Nature and Society</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>856</spage><epage>869-084</epage><pages>856-869-084</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2015/293050</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete Dynamics in Nature and Society, 2015-01, Vol.2015 (2015), p.856-869-084
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library
subjects Competition
Dynamical systems
Dynamics
Extinction
Inequalities
Inequalities (Mathematics)
Integral equations
Lotka-Volterra equations
Lyapunov functions
Mathematical models
Mathematical research
Migration
Periodic functions
Predator-prey simulation
Science
Topological spaces
Trends
title Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanence%20and%20Periodic%20Solutions%20for%20a%20Two-Patch%20Impulsive%20Migration%20Periodic%20N-Species%20Lotka-Volterra%20Competitive%20System&rft.jtitle=Discrete%20Dynamics%20in%20Nature%20and%20Society&rft.au=Liu,%20Zijian&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=856&rft.epage=869-084&rft.pages=856-869-084&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2015/293050&rft_dat=%3Cgale_doaj_%3EA510936576%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1755483945&rft_id=info:pmid/&rft_galeid=A510936576&rft_airiti_id=P20160913003_201512_201611280050_201611280050_856_869_084&rfr_iscdi=true