Loading…
Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System
We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system ar...
Saved in:
Published in: | Discrete Dynamics in Nature and Society 2015-01, Vol.2015 (2015), p.856-869-084 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3 |
container_end_page | 869-084 |
container_issue | 2015 |
container_start_page | 856 |
container_title | Discrete Dynamics in Nature and Society |
container_volume | 2015 |
creator | Liu, Zijian Yang, Chenxue |
description | We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further. |
doi_str_mv | 10.1155/2015/293050 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510936576</galeid><airiti_id>P20160913003_201512_201611280050_201611280050_856_869_084</airiti_id><doaj_id>oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a</doaj_id><sourcerecordid>A510936576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4soeJ4--S4FX0TpOUmaNHk8Fn8srLqwp_gW0mS6l7Nt1qTrcf71ZrfiqS9KIMmEz_c7zGSK4jGBM0I4f0mB5E0x4HCnOCECmkrK5vPdfAcqKqBU3C8epHQFQEEqelJ8X2MczIijxdKMrsyhD87bchP6_eTDmMouxNKUF9ehWpvJXpbLYbfvk_-G5Tu_jeYA3creV5sdWo-pXIXpi6k-hX7CGE25CMMOJz8ddJubNOHwsLjXmT7ho5_nafHx9auLxdtq9eHNcnG-qgwXaqoaiV0Hrao717hcEafCKdIS25qGWYYtNIJ2ra0FBcsYcoZGOdk6IjoJ1LDTYjn7umCu9C76wcQbHYzXx4cQt9rEydse9SFXw6SsUdratUZZZ63FmghkbXf0ejZ77WL4usc06cEni32fWxj2SZNGCkq5EpDRp3-hV2Efx1xppjivJVM1z9TZTG1Nzu_HLkzR2LwcDt6GETuf3885AcUEb8T_CrJ1DVJwkgUvZoGNIaWI3a8WENCHqdGHqdHz1GT6-Uxf-tGZa_8P-MkMY0awM7_BAuojsJ4B42P--tsOrLONAEUYADtaEno4BCFUQrb-M5BcaCmUBlmzH0uM4Lk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755483945</pqid></control><display><type>article</type><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library</source><creator>Liu, Zijian ; Yang, Chenxue</creator><contributor>El-Morshedy, Hassan A.</contributor><creatorcontrib>Liu, Zijian ; Yang, Chenxue ; El-Morshedy, Hassan A.</creatorcontrib><description>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2015/293050</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Competition ; Dynamical systems ; Dynamics ; Extinction ; Inequalities ; Inequalities (Mathematics) ; Integral equations ; Lotka-Volterra equations ; Lyapunov functions ; Mathematical models ; Mathematical research ; Migration ; Periodic functions ; Predator-prey simulation ; Science ; Topological spaces ; Trends</subject><ispartof>Discrete Dynamics in Nature and Society, 2015-01, Vol.2015 (2015), p.856-869-084</ispartof><rights>Copyright © 2015 Zijian Liu and Chenxue Yang.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2015 Zijian Liu and Chenxue Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</citedby><cites>FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1755483945/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1755483945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>El-Morshedy, Hassan A.</contributor><creatorcontrib>Liu, Zijian</creatorcontrib><creatorcontrib>Yang, Chenxue</creatorcontrib><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><title>Discrete Dynamics in Nature and Society</title><description>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</description><subject>Competition</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Extinction</subject><subject>Inequalities</subject><subject>Inequalities (Mathematics)</subject><subject>Integral equations</subject><subject>Lotka-Volterra equations</subject><subject>Lyapunov functions</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Migration</subject><subject>Periodic functions</subject><subject>Predator-prey simulation</subject><subject>Science</subject><subject>Topological spaces</subject><subject>Trends</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt-L1DAQx4soeJ4--S4FX0TpOUmaNHk8Fn8srLqwp_gW0mS6l7Nt1qTrcf71ZrfiqS9KIMmEz_c7zGSK4jGBM0I4f0mB5E0x4HCnOCECmkrK5vPdfAcqKqBU3C8epHQFQEEqelJ8X2MczIijxdKMrsyhD87bchP6_eTDmMouxNKUF9ehWpvJXpbLYbfvk_-G5Tu_jeYA3creV5sdWo-pXIXpi6k-hX7CGE25CMMOJz8ddJubNOHwsLjXmT7ho5_nafHx9auLxdtq9eHNcnG-qgwXaqoaiV0Hrao717hcEafCKdIS25qGWYYtNIJ2ra0FBcsYcoZGOdk6IjoJ1LDTYjn7umCu9C76wcQbHYzXx4cQt9rEydse9SFXw6SsUdratUZZZ63FmghkbXf0ejZ77WL4usc06cEni32fWxj2SZNGCkq5EpDRp3-hV2Efx1xppjivJVM1z9TZTG1Nzu_HLkzR2LwcDt6GETuf3885AcUEb8T_CrJ1DVJwkgUvZoGNIaWI3a8WENCHqdGHqdHz1GT6-Uxf-tGZa_8P-MkMY0awM7_BAuojsJ4B42P--tsOrLONAEUYADtaEno4BCFUQrb-M5BcaCmUBlmzH0uM4Lk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liu, Zijian</creator><creator>Yang, Chenxue</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20150101</creationdate><title>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</title><author>Liu, Zijian ; Yang, Chenxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Competition</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Extinction</topic><topic>Inequalities</topic><topic>Inequalities (Mathematics)</topic><topic>Integral equations</topic><topic>Lotka-Volterra equations</topic><topic>Lyapunov functions</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Migration</topic><topic>Periodic functions</topic><topic>Predator-prey simulation</topic><topic>Science</topic><topic>Topological spaces</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zijian</creatorcontrib><creatorcontrib>Yang, Chenxue</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discrete Dynamics in Nature and Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zijian</au><au>Yang, Chenxue</au><au>El-Morshedy, Hassan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System</atitle><jtitle>Discrete Dynamics in Nature and Society</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>856</spage><epage>869-084</epage><pages>856-869-084</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>We study a two-patch impulsive migration periodic N-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2015/293050</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete Dynamics in Nature and Society, 2015-01, Vol.2015 (2015), p.856-869-084 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_78ef73884e8c4dba9cdccce416e3bf2a |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library |
subjects | Competition Dynamical systems Dynamics Extinction Inequalities Inequalities (Mathematics) Integral equations Lotka-Volterra equations Lyapunov functions Mathematical models Mathematical research Migration Periodic functions Predator-prey simulation Science Topological spaces Trends |
title | Permanence and Periodic Solutions for a Two-Patch Impulsive Migration Periodic N-Species Lotka-Volterra Competitive System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanence%20and%20Periodic%20Solutions%20for%20a%20Two-Patch%20Impulsive%20Migration%20Periodic%20N-Species%20Lotka-Volterra%20Competitive%20System&rft.jtitle=Discrete%20Dynamics%20in%20Nature%20and%20Society&rft.au=Liu,%20Zijian&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=856&rft.epage=869-084&rft.pages=856-869-084&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2015/293050&rft_dat=%3Cgale_doaj_%3EA510936576%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a569t-78eff0b94fd7d607526d91b1cba73c3eb0762fbc4620c33e53ea9d8bd16f802a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1755483945&rft_id=info:pmid/&rft_galeid=A510936576&rft_airiti_id=P20160913003_201512_201611280050_201611280050_856_869_084&rfr_iscdi=true |