Loading…

Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes

Using in vitro , in vivo and patient-based approaches, we investigated the potential of circulating microRNAs (miRNAs) as surrogate biomarkers of myocardial steatosis, a hallmark of diabetic cardiomyopathy. We analysed the cardiomyocyte-enriched miRNA signature in serum from patients with well-contr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-03, Vol.7 (1), p.47-14, Article 47
Main Authors: de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W. A., Revuelta-Lopez, E., Nasarre, L., Escola-Gil, J. C., Lamb, H. J., Llorente-Cortes, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using in vitro , in vivo and patient-based approaches, we investigated the potential of circulating microRNAs (miRNAs) as surrogate biomarkers of myocardial steatosis, a hallmark of diabetic cardiomyopathy. We analysed the cardiomyocyte-enriched miRNA signature in serum from patients with well-controlled type 2 diabetes and with verified absence of structural heart disease or inducible ischemia, and control volunteers of the same age range and BMI (N = 86), in serum from a high-fat diet-fed murine model, and in exosomes from lipid-loaded HL-1 cardiomyocytes. Circulating miR-1 and miR-133a levels were robustly associated with myocardial steatosis in type 2 diabetes patients, independently of confounding factors in both linear and logistic regression analyses ( P  
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-00070-6