Loading…
Two dynamic modes to streamline challenging atomic force microscopy measurements
The quality of topographic images obtained using atomic force microscopy strongly depends on the accuracy of the choice of scanning parameters. When using the most common scanning method – semicontact amplitude modulation (tapping) mode, the choice of scanning parameters is quite complicated, since...
Saved in:
Published in: | Beilstein journal of nanotechnology 2021-11, Vol.12 (1), p.1226-1236 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quality of topographic images obtained using atomic force microscopy strongly depends on the accuracy of the choice of scanning parameters. When using the most common scanning method – semicontact amplitude modulation (tapping) mode, the choice of scanning parameters is quite complicated, since it requires taking into account many factors and finding the optimal balance between them. A researcher’s task can be significantly simplified by introducing new scanning techniques. Two such techniques are described: vertical and dissipation modes. Significantly simplified and formalized choice of the imaging parameters in these modes allows addressing a wide range of formerly challenging tasks – from scanning rough samples with high aspect ratio features to molecular resolution imaging. |
---|---|
ISSN: | 2190-4286 2190-4286 |
DOI: | 10.3762/bjnano.12.90 |