Loading…

FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION

To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2012-08, Vol.XXXIX-B3, p.467-472
Main Authors: Chen, Y. X., Qin, K., Liu, Y., Gan, S. Z., Zhan, Y.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2412-e66fc160cb6095692337359984778814b7f61b3caba31c8c93aea48c95e274993
cites
container_end_page 472
container_issue
container_start_page 467
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XXXIX-B3
creator Chen, Y. X.
Qin, K.
Liu, Y.
Gan, S. Z.
Zhan, Y.
description To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C-Means (FCM) algorithm which incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation features can effectively improve the segmentation quality of high resolution satellite images.
doi_str_mv 10.5194/isprsarchives-XXXIX-B3-467-2012
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7912ff25cff347e58a35592982e18a67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7912ff25cff347e58a35592982e18a67</doaj_id><sourcerecordid>oai_doaj_org_article_7912ff25cff347e58a35592982e18a67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2412-e66fc160cb6095692337359984778814b7f61b3caba31c8c93aea48c95e274993</originalsourceid><addsrcrecordid>eNpVkE1Lw0AYhIMoWLT_ITdP0f3e7EnSdJsG0q7kA3Jy2awbTam0JCL4701aET3NvMO8c3g87w6CewoFeeiGYz-Y3r51n24I6rpO62CBA8J4gABEF94MjbVAAEwu__hrbz4MOwAAJIxRQGfe80pGZZVLf6OWMsvSbeKrlb9Ok7Wfy0JlVZmq7Wg3qpR-IbfF1Eg3USILP1bjuZT5FBVPUZlGmR9VpYpVnsssmj5vvavW7Ac3_9Ebr1rJMl4HmUrSOMoCiwhEgWOstZAB2zAgKBMIY46pECHhPAwhaXjLYIOtaQyGNrQCG2fIqNQhToTAN1563n05mJ0-9t276b_0wXT6FBz6V236j87uneYCorZF1LYtJtzR0GBKBRIhcjA0jI9bj-ct2x-GoXft7x4EeqKv_9HXJ_p6gfVIX0_08TeMUHWT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Y. X. ; Qin, K. ; Liu, Y. ; Gan, S. Z. ; Zhan, Y.</creator><creatorcontrib>Chen, Y. X. ; Qin, K. ; Liu, Y. ; Gan, S. Z. ; Zhan, Y.</creatorcontrib><description>To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C-Means (FCM) algorithm which incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation features can effectively improve the segmentation quality of high resolution satellite images.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprsarchives-XXXIX-B3-467-2012</identifier><language>eng</language><publisher>Copernicus Publications</publisher><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2012-08, Vol.XXXIX-B3, p.467-472</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2412-e66fc160cb6095692337359984778814b7f61b3caba31c8c93aea48c95e274993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Y. X.</creatorcontrib><creatorcontrib>Qin, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Gan, S. Z.</creatorcontrib><creatorcontrib>Zhan, Y.</creatorcontrib><title>FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C-Means (FCM) algorithm which incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation features can effectively improve the segmentation quality of high resolution satellite images.</description><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkE1Lw0AYhIMoWLT_ITdP0f3e7EnSdJsG0q7kA3Jy2awbTam0JCL4701aET3NvMO8c3g87w6CewoFeeiGYz-Y3r51n24I6rpO62CBA8J4gABEF94MjbVAAEwu__hrbz4MOwAAJIxRQGfe80pGZZVLf6OWMsvSbeKrlb9Ok7Wfy0JlVZmq7Wg3qpR-IbfF1Eg3USILP1bjuZT5FBVPUZlGmR9VpYpVnsssmj5vvavW7Ac3_9Ebr1rJMl4HmUrSOMoCiwhEgWOstZAB2zAgKBMIY46pECHhPAwhaXjLYIOtaQyGNrQCG2fIqNQhToTAN1563n05mJ0-9t276b_0wXT6FBz6V236j87uneYCorZF1LYtJtzR0GBKBRIhcjA0jI9bj-ct2x-GoXft7x4EeqKv_9HXJ_p6gfVIX0_08TeMUHWT</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Chen, Y. X.</creator><creator>Qin, K.</creator><creator>Liu, Y.</creator><creator>Gan, S. Z.</creator><creator>Zhan, Y.</creator><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20120801</creationdate><title>FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION</title><author>Chen, Y. X. ; Qin, K. ; Liu, Y. ; Gan, S. Z. ; Zhan, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2412-e66fc160cb6095692337359984778814b7f61b3caba31c8c93aea48c95e274993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y. X.</creatorcontrib><creatorcontrib>Qin, K.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Gan, S. Z.</creatorcontrib><creatorcontrib>Zhan, Y.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y. X.</au><au>Qin, K.</au><au>Liu, Y.</au><au>Gan, S. Z.</au><au>Zhan, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>XXXIX-B3</volume><spage>467</spage><epage>472</epage><pages>467-472</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C-Means (FCM) algorithm which incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation features can effectively improve the segmentation quality of high resolution satellite images.</abstract><pub>Copernicus Publications</pub><doi>10.5194/isprsarchives-XXXIX-B3-467-2012</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2012-08, Vol.XXXIX-B3, p.467-472
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7912ff25cff347e58a35592982e18a67
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FEATURE%20MODELLING%20OF%20HIGH%20RESOLUTION%20REMOTE%20SENSING%20IMAGES%20CONSIDERING%20SPATIAL%20AUTOCORRELATION&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Chen,%20Y.%20X.&rft.date=2012-08-01&rft.volume=XXXIX-B3&rft.spage=467&rft.epage=472&rft.pages=467-472&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprsarchives-XXXIX-B3-467-2012&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_7912ff25cff347e58a35592982e18a67%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2412-e66fc160cb6095692337359984778814b7f61b3caba31c8c93aea48c95e274993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true