Loading…

A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect

The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. Th...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2024-09, Vol.14 (9), p.964
Main Authors: Abasolo, Mikel, Pallares-Santasmartas, Luis, Eizmendi, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713
container_end_page
container_issue 9
container_start_page 964
container_title Metals (Basel )
container_volume 14
creator Abasolo, Mikel
Pallares-Santasmartas, Luis
Eizmendi, Martin
description The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.
doi_str_mv 10.3390/met14090964
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811217478</galeid><doaj_id>oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0</doaj_id><sourcerecordid>A811217478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUoDDWme-gOCPhYnul8ejXGaQC6Fps9irB05MuuVq9WS9O-rxKVk5mGGw5nDmZmu-8LohRCOXu6xMkkddVp-6E45NWohDWUf3_WfuvNp2tEWlmvq3GmXluQen8mqpJoCDOTHACOSu3moCV5SA66gpu2MbwwsKY_kOdUnAiNZvxzyiGMlNZNlCHlubcyFXKftE7nDxvhZC04TWceIoX7uTiIME57_q2fdr6v14-p6cfvw_Wa1vF0ErmRdxOA0KtAge947bQOnVCtN-8C1i9oKFxQVrWBEQUFaLgJQxqzEoKNh4qy7Oer2GXb-UNIeyh-fIfk3IJeth9KWHdAbx5TpjVMbGyWDsAGzAe6ckhunLNCm9fWodSj594xT9bs8l7HZ94IxqrUQ1jTWxZG1hSaaxphrgdCyx30K7UYxNXxpGePMSGPbwLfjQCh5mgrG_zYZ9a-_9O9-Kf4CYn-PBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110663387</pqid></control><display><type>article</type><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><source>Publicly Available Content Database</source><creator>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</creator><creatorcontrib>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</creatorcontrib><description>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met14090964</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Criteria ; critical plane criterion ; Fatigue ; fatigue failure prediction ; Fatigue tests ; Load ; mean stress effect ; Metals ; multiaxial fatigue ; Normal stress ; Shear stress ; Strains and stresses ; Stress relaxation (Materials) ; Stress relieving (Materials) ; structural components ; Tensile stress ; Testing ; Titanium alloys</subject><ispartof>Metals (Basel ), 2024-09, Vol.14 (9), p.964</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</cites><orcidid>0009-0006-8415-9634 ; 0000-0001-9937-056X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110663387/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110663387?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Abasolo, Mikel</creatorcontrib><creatorcontrib>Pallares-Santasmartas, Luis</creatorcontrib><creatorcontrib>Eizmendi, Martin</creatorcontrib><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><title>Metals (Basel )</title><description>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</description><subject>Aluminum</subject><subject>Criteria</subject><subject>critical plane criterion</subject><subject>Fatigue</subject><subject>fatigue failure prediction</subject><subject>Fatigue tests</subject><subject>Load</subject><subject>mean stress effect</subject><subject>Metals</subject><subject>multiaxial fatigue</subject><subject>Normal stress</subject><subject>Shear stress</subject><subject>Strains and stresses</subject><subject>Stress relaxation (Materials)</subject><subject>Stress relieving (Materials)</subject><subject>structural components</subject><subject>Tensile stress</subject><subject>Testing</subject><subject>Titanium alloys</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUoDDWme-gOCPhYnul8ejXGaQC6Fps9irB05MuuVq9WS9O-rxKVk5mGGw5nDmZmu-8LohRCOXu6xMkkddVp-6E45NWohDWUf3_WfuvNp2tEWlmvq3GmXluQen8mqpJoCDOTHACOSu3moCV5SA66gpu2MbwwsKY_kOdUnAiNZvxzyiGMlNZNlCHlubcyFXKftE7nDxvhZC04TWceIoX7uTiIME57_q2fdr6v14-p6cfvw_Wa1vF0ErmRdxOA0KtAge947bQOnVCtN-8C1i9oKFxQVrWBEQUFaLgJQxqzEoKNh4qy7Oer2GXb-UNIeyh-fIfk3IJeth9KWHdAbx5TpjVMbGyWDsAGzAe6ckhunLNCm9fWodSj594xT9bs8l7HZ94IxqrUQ1jTWxZG1hSaaxphrgdCyx30K7UYxNXxpGePMSGPbwLfjQCh5mgrG_zYZ9a-_9O9-Kf4CYn-PBA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Abasolo, Mikel</creator><creator>Pallares-Santasmartas, Luis</creator><creator>Eizmendi, Martin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-8415-9634</orcidid><orcidid>https://orcid.org/0000-0001-9937-056X</orcidid></search><sort><creationdate>20240901</creationdate><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><author>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Criteria</topic><topic>critical plane criterion</topic><topic>Fatigue</topic><topic>fatigue failure prediction</topic><topic>Fatigue tests</topic><topic>Load</topic><topic>mean stress effect</topic><topic>Metals</topic><topic>multiaxial fatigue</topic><topic>Normal stress</topic><topic>Shear stress</topic><topic>Strains and stresses</topic><topic>Stress relaxation (Materials)</topic><topic>Stress relieving (Materials)</topic><topic>structural components</topic><topic>Tensile stress</topic><topic>Testing</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abasolo, Mikel</creatorcontrib><creatorcontrib>Pallares-Santasmartas, Luis</creatorcontrib><creatorcontrib>Eizmendi, Martin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abasolo, Mikel</au><au>Pallares-Santasmartas, Luis</au><au>Eizmendi, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</atitle><jtitle>Metals (Basel )</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><spage>964</spage><pages>964-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met14090964</doi><orcidid>https://orcid.org/0009-0006-8415-9634</orcidid><orcidid>https://orcid.org/0000-0001-9937-056X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2024-09, Vol.14 (9), p.964
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0
source Publicly Available Content Database
subjects Aluminum
Criteria
critical plane criterion
Fatigue
fatigue failure prediction
Fatigue tests
Load
mean stress effect
Metals
multiaxial fatigue
Normal stress
Shear stress
Strains and stresses
Stress relaxation (Materials)
Stress relieving (Materials)
structural components
Tensile stress
Testing
Titanium alloys
title A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Critical%20Plane%20Multiaxial%20Fatigue%20Criterion%20with%20an%20Exponent%20to%20Account%20for%20High%20Mean%20Stress%20Effect&rft.jtitle=Metals%20(Basel%20)&rft.au=Abasolo,%20Mikel&rft.date=2024-09-01&rft.volume=14&rft.issue=9&rft.spage=964&rft.pages=964-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met14090964&rft_dat=%3Cgale_doaj_%3EA811217478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110663387&rft_id=info:pmid/&rft_galeid=A811217478&rfr_iscdi=true