Loading…
A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect
The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. Th...
Saved in:
Published in: | Metals (Basel ) 2024-09, Vol.14 (9), p.964 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713 |
container_end_page | |
container_issue | 9 |
container_start_page | 964 |
container_title | Metals (Basel ) |
container_volume | 14 |
creator | Abasolo, Mikel Pallares-Santasmartas, Luis Eizmendi, Martin |
description | The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components. |
doi_str_mv | 10.3390/met14090964 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811217478</galeid><doaj_id>oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0</doaj_id><sourcerecordid>A811217478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUoDDWme-gOCPhYnul8ejXGaQC6Fps9irB05MuuVq9WS9O-rxKVk5mGGw5nDmZmu-8LohRCOXu6xMkkddVp-6E45NWohDWUf3_WfuvNp2tEWlmvq3GmXluQen8mqpJoCDOTHACOSu3moCV5SA66gpu2MbwwsKY_kOdUnAiNZvxzyiGMlNZNlCHlubcyFXKftE7nDxvhZC04TWceIoX7uTiIME57_q2fdr6v14-p6cfvw_Wa1vF0ErmRdxOA0KtAge947bQOnVCtN-8C1i9oKFxQVrWBEQUFaLgJQxqzEoKNh4qy7Oer2GXb-UNIeyh-fIfk3IJeth9KWHdAbx5TpjVMbGyWDsAGzAe6ckhunLNCm9fWodSj594xT9bs8l7HZ94IxqrUQ1jTWxZG1hSaaxphrgdCyx30K7UYxNXxpGePMSGPbwLfjQCh5mgrG_zYZ9a-_9O9-Kf4CYn-PBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110663387</pqid></control><display><type>article</type><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><source>Publicly Available Content Database</source><creator>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</creator><creatorcontrib>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</creatorcontrib><description>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met14090964</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Criteria ; critical plane criterion ; Fatigue ; fatigue failure prediction ; Fatigue tests ; Load ; mean stress effect ; Metals ; multiaxial fatigue ; Normal stress ; Shear stress ; Strains and stresses ; Stress relaxation (Materials) ; Stress relieving (Materials) ; structural components ; Tensile stress ; Testing ; Titanium alloys</subject><ispartof>Metals (Basel ), 2024-09, Vol.14 (9), p.964</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</cites><orcidid>0009-0006-8415-9634 ; 0000-0001-9937-056X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110663387/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110663387?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Abasolo, Mikel</creatorcontrib><creatorcontrib>Pallares-Santasmartas, Luis</creatorcontrib><creatorcontrib>Eizmendi, Martin</creatorcontrib><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><title>Metals (Basel )</title><description>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</description><subject>Aluminum</subject><subject>Criteria</subject><subject>critical plane criterion</subject><subject>Fatigue</subject><subject>fatigue failure prediction</subject><subject>Fatigue tests</subject><subject>Load</subject><subject>mean stress effect</subject><subject>Metals</subject><subject>multiaxial fatigue</subject><subject>Normal stress</subject><subject>Shear stress</subject><subject>Strains and stresses</subject><subject>Stress relaxation (Materials)</subject><subject>Stress relieving (Materials)</subject><subject>structural components</subject><subject>Tensile stress</subject><subject>Testing</subject><subject>Titanium alloys</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUoDDWme-gOCPhYnul8ejXGaQC6Fps9irB05MuuVq9WS9O-rxKVk5mGGw5nDmZmu-8LohRCOXu6xMkkddVp-6E45NWohDWUf3_WfuvNp2tEWlmvq3GmXluQen8mqpJoCDOTHACOSu3moCV5SA66gpu2MbwwsKY_kOdUnAiNZvxzyiGMlNZNlCHlubcyFXKftE7nDxvhZC04TWceIoX7uTiIME57_q2fdr6v14-p6cfvw_Wa1vF0ErmRdxOA0KtAge947bQOnVCtN-8C1i9oKFxQVrWBEQUFaLgJQxqzEoKNh4qy7Oer2GXb-UNIeyh-fIfk3IJeth9KWHdAbx5TpjVMbGyWDsAGzAe6ckhunLNCm9fWodSj594xT9bs8l7HZ94IxqrUQ1jTWxZG1hSaaxphrgdCyx30K7UYxNXxpGePMSGPbwLfjQCh5mgrG_zYZ9a-_9O9-Kf4CYn-PBA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Abasolo, Mikel</creator><creator>Pallares-Santasmartas, Luis</creator><creator>Eizmendi, Martin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-8415-9634</orcidid><orcidid>https://orcid.org/0000-0001-9937-056X</orcidid></search><sort><creationdate>20240901</creationdate><title>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</title><author>Abasolo, Mikel ; Pallares-Santasmartas, Luis ; Eizmendi, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Criteria</topic><topic>critical plane criterion</topic><topic>Fatigue</topic><topic>fatigue failure prediction</topic><topic>Fatigue tests</topic><topic>Load</topic><topic>mean stress effect</topic><topic>Metals</topic><topic>multiaxial fatigue</topic><topic>Normal stress</topic><topic>Shear stress</topic><topic>Strains and stresses</topic><topic>Stress relaxation (Materials)</topic><topic>Stress relieving (Materials)</topic><topic>structural components</topic><topic>Tensile stress</topic><topic>Testing</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abasolo, Mikel</creatorcontrib><creatorcontrib>Pallares-Santasmartas, Luis</creatorcontrib><creatorcontrib>Eizmendi, Martin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abasolo, Mikel</au><au>Pallares-Santasmartas, Luis</au><au>Eizmendi, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect</atitle><jtitle>Metals (Basel )</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><spage>964</spage><pages>964-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work presents a new criterion that, based on the classical Findley criterion, applies a material-dependent exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter. This way of considering the non-linear effect of the mean stress, with a material-dependent rather than a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In order to verify its accuracy, the new criterion has been checked against an extended version of the Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios. These features enhance the applicability and versatility of the criterion for its use in the fatigue design of structural components.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met14090964</doi><orcidid>https://orcid.org/0009-0006-8415-9634</orcidid><orcidid>https://orcid.org/0000-0001-9937-056X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2024-09, Vol.14 (9), p.964 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_79157d795b8f41acba7ba29954b958a0 |
source | Publicly Available Content Database |
subjects | Aluminum Criteria critical plane criterion Fatigue fatigue failure prediction Fatigue tests Load mean stress effect Metals multiaxial fatigue Normal stress Shear stress Strains and stresses Stress relaxation (Materials) Stress relieving (Materials) structural components Tensile stress Testing Titanium alloys |
title | A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Critical%20Plane%20Multiaxial%20Fatigue%20Criterion%20with%20an%20Exponent%20to%20Account%20for%20High%20Mean%20Stress%20Effect&rft.jtitle=Metals%20(Basel%20)&rft.au=Abasolo,%20Mikel&rft.date=2024-09-01&rft.volume=14&rft.issue=9&rft.spage=964&rft.pages=964-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met14090964&rft_dat=%3Cgale_doaj_%3EA811217478%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-fc96e5a6a4d2d968c2006560dc269f6839c503839efe30a4823ca01184ec6f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110663387&rft_id=info:pmid/&rft_galeid=A811217478&rfr_iscdi=true |