Loading…

Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue

Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes a...

Full description

Saved in:
Bibliographic Details
Published in:Parasites & vectors 2021-12, Vol.14 (1), p.605-11, Article 605
Main Authors: Chakraborti, Soumyananda, Chhibber-Goel, Jyoti, Sharma, Amit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3
cites cdi_FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3
container_end_page 11
container_issue 1
container_start_page 605
container_title Parasites & vectors
container_volume 14
creator Chakraborti, Soumyananda
Chhibber-Goel, Jyoti
Sharma, Amit
description Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
doi_str_mv 10.1186/s13071-021-05106-5
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_792f9efc48a6474fa08bda6e12445c62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693537877</galeid><doaj_id>oai_doaj_org_article_792f9efc48a6474fa08bda6e12445c62</doaj_id><sourcerecordid>A693537877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3</originalsourceid><addsrcrecordid>eNptUlFrFDEQXkSxtfoHfJAFn3zYmmw22c2LcNSqB0Wh6nOYy072cuwm1yQr3r9velfLHUgIM5l838dM8hXFW0ouKe3Ex0gZaWlF6rw5JaLiz4pz2nJRMUb486P8rHgV44YQQSQXL4sz1nSSMyLPi7vPYR7KBGHAZN1QelPCZJ0HvRurdPt9UcadS2tMEDGW1pUL57drHPMhblHbHMH15QL7hwyH3TbZMq0hlRrmiOUEIwQLe1CPbpjxdfHCwBjxzWO8KH5_uf519a26-fF1ebW4qTSXbapYbbjkWgNFKvtOCKF1x3oCZtUARyEpkQAESGcMUq2bFmgtDasbhthqzS6K5UG397BR22AnCDvlwap9wYdBQUhWj6haWRuJRjcdiKZtTBZd9SCQ1k3Dtaiz1qeD1nZeTdhrdCnAeCJ6euPsWg3-j8p9c85JFnj_KBD83YwxqY2fg8vzq1pQyvLI9Ag1QO7KOuOzmJ5s1GohJOOs7do2oy7_g8qrx8lq79DYXD8hfDghZEzCv2nIHxTV8uftKbY-YHXwMQY0T0NSoh5cpw6uU9l1au86xTPp3fHzPFH-2YzdA-_o0mk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611359710</pqid></control><display><type>article</type><title>Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OpenAccess)</source><creator>Chakraborti, Soumyananda ; Chhibber-Goel, Jyoti ; Sharma, Amit</creator><creatorcontrib>Chakraborti, Soumyananda ; Chhibber-Goel, Jyoti ; Sharma, Amit</creatorcontrib><description>Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was &gt; 80% and in Ae. aegypti was &gt; 50%. Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.</description><identifier>ISSN: 1756-3305</identifier><identifier>EISSN: 1756-3305</identifier><identifier>DOI: 10.1186/s13071-021-05106-5</identifier><identifier>PMID: 34895309</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adenosine ; Aedes ; Aedes - drug effects ; Aedes - enzymology ; Aedes - genetics ; Aedes aegypti ; Aedes albopictus ; Aedes spp ; Amino Acid Sequence ; Amino acids ; Amino Acyl-tRNA Synthetases - antagonists &amp; inhibitors ; Amino Acyl-tRNA Synthetases - chemistry ; Amino Acyl-tRNA Synthetases - genetics ; Aminoacyl-tRNA synthetases ; Animals ; Anopheles ; Anopheles - drug effects ; Anopheles - enzymology ; Anopheles - genetics ; Anopheles spp ; Antiinfectives and antibacterials ; Antimalarial agents ; Aquatic insects ; Binding sites ; Chemical properties ; Computer applications ; Culicidae ; Cytoplasm ; Dengue ; Dengue - transmission ; Dengue fever ; Disease transmission ; Drug Delivery Systems ; Drug Discovery ; Drug targeting ; Drug therapy ; Drugs ; Editing ; Enzyme inhibitors ; Enzymes ; Genomes ; Genomics ; Human diseases ; Humans ; Insecticide Resistance ; Insecticides ; Insecticides - pharmacology ; Localization ; Malaria ; Malaria - transmission ; Mitochondria ; Models, Structural ; Mosquito Vectors - drug effects ; Mosquito Vectors - enzymology ; Mosquito Vectors - genetics ; Mosquitoes ; Peptides ; Pesticide resistance ; Pharmaceutical research ; Physiological aspects ; Protein biosynthesis ; Protein synthesis ; Proteins ; Sequence Alignment ; Sequencing ; Short Report ; Species ; Structural analysis ; Structural models ; Structure-Activity Relationship ; Structure-activity relationships (Biochemistry) ; Structure-function relationships ; Therapeutic targets ; Transfer RNA ; tRNA ; Tropical diseases ; Vector-borne diseases ; Vectors ; West Nile virus ; Yellow fever ; Zika virus</subject><ispartof>Parasites &amp; vectors, 2021-12, Vol.14 (1), p.605-11, Article 605</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3</citedby><cites>FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3</cites><orcidid>0000-0002-7384-690X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2611359710?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34895309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Chhibber-Goel, Jyoti</creatorcontrib><creatorcontrib>Sharma, Amit</creatorcontrib><title>Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue</title><title>Parasites &amp; vectors</title><addtitle>Parasit Vectors</addtitle><description>Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was &gt; 80% and in Ae. aegypti was &gt; 50%. Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.</description><subject>Adenosine</subject><subject>Aedes</subject><subject>Aedes - drug effects</subject><subject>Aedes - enzymology</subject><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>Aedes albopictus</subject><subject>Aedes spp</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - antagonists &amp; inhibitors</subject><subject>Amino Acyl-tRNA Synthetases - chemistry</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Aminoacyl-tRNA synthetases</subject><subject>Animals</subject><subject>Anopheles</subject><subject>Anopheles - drug effects</subject><subject>Anopheles - enzymology</subject><subject>Anopheles - genetics</subject><subject>Anopheles spp</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimalarial agents</subject><subject>Aquatic insects</subject><subject>Binding sites</subject><subject>Chemical properties</subject><subject>Computer applications</subject><subject>Culicidae</subject><subject>Cytoplasm</subject><subject>Dengue</subject><subject>Dengue - transmission</subject><subject>Dengue fever</subject><subject>Disease transmission</subject><subject>Drug Delivery Systems</subject><subject>Drug Discovery</subject><subject>Drug targeting</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Editing</subject><subject>Enzyme inhibitors</subject><subject>Enzymes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human diseases</subject><subject>Humans</subject><subject>Insecticide Resistance</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Localization</subject><subject>Malaria</subject><subject>Malaria - transmission</subject><subject>Mitochondria</subject><subject>Models, Structural</subject><subject>Mosquito Vectors - drug effects</subject><subject>Mosquito Vectors - enzymology</subject><subject>Mosquito Vectors - genetics</subject><subject>Mosquitoes</subject><subject>Peptides</subject><subject>Pesticide resistance</subject><subject>Pharmaceutical research</subject><subject>Physiological aspects</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Sequence Alignment</subject><subject>Sequencing</subject><subject>Short Report</subject><subject>Species</subject><subject>Structural analysis</subject><subject>Structural models</subject><subject>Structure-Activity Relationship</subject><subject>Structure-activity relationships (Biochemistry)</subject><subject>Structure-function relationships</subject><subject>Therapeutic targets</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>West Nile virus</subject><subject>Yellow fever</subject><subject>Zika virus</subject><issn>1756-3305</issn><issn>1756-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUlFrFDEQXkSxtfoHfJAFn3zYmmw22c2LcNSqB0Wh6nOYy072cuwm1yQr3r9velfLHUgIM5l838dM8hXFW0ouKe3Ex0gZaWlF6rw5JaLiz4pz2nJRMUb486P8rHgV44YQQSQXL4sz1nSSMyLPi7vPYR7KBGHAZN1QelPCZJ0HvRurdPt9UcadS2tMEDGW1pUL57drHPMhblHbHMH15QL7hwyH3TbZMq0hlRrmiOUEIwQLe1CPbpjxdfHCwBjxzWO8KH5_uf519a26-fF1ebW4qTSXbapYbbjkWgNFKvtOCKF1x3oCZtUARyEpkQAESGcMUq2bFmgtDasbhthqzS6K5UG397BR22AnCDvlwap9wYdBQUhWj6haWRuJRjcdiKZtTBZd9SCQ1k3Dtaiz1qeD1nZeTdhrdCnAeCJ6euPsWg3-j8p9c85JFnj_KBD83YwxqY2fg8vzq1pQyvLI9Ag1QO7KOuOzmJ5s1GohJOOs7do2oy7_g8qrx8lq79DYXD8hfDghZEzCv2nIHxTV8uftKbY-YHXwMQY0T0NSoh5cpw6uU9l1au86xTPp3fHzPFH-2YzdA-_o0mk</recordid><startdate>20211211</startdate><enddate>20211211</enddate><creator>Chakraborti, Soumyananda</creator><creator>Chhibber-Goel, Jyoti</creator><creator>Sharma, Amit</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H95</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid></search><sort><creationdate>20211211</creationdate><title>Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue</title><author>Chakraborti, Soumyananda ; Chhibber-Goel, Jyoti ; Sharma, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Aedes</topic><topic>Aedes - drug effects</topic><topic>Aedes - enzymology</topic><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>Aedes albopictus</topic><topic>Aedes spp</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - antagonists &amp; inhibitors</topic><topic>Amino Acyl-tRNA Synthetases - chemistry</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Aminoacyl-tRNA synthetases</topic><topic>Animals</topic><topic>Anopheles</topic><topic>Anopheles - drug effects</topic><topic>Anopheles - enzymology</topic><topic>Anopheles - genetics</topic><topic>Anopheles spp</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimalarial agents</topic><topic>Aquatic insects</topic><topic>Binding sites</topic><topic>Chemical properties</topic><topic>Computer applications</topic><topic>Culicidae</topic><topic>Cytoplasm</topic><topic>Dengue</topic><topic>Dengue - transmission</topic><topic>Dengue fever</topic><topic>Disease transmission</topic><topic>Drug Delivery Systems</topic><topic>Drug Discovery</topic><topic>Drug targeting</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Editing</topic><topic>Enzyme inhibitors</topic><topic>Enzymes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human diseases</topic><topic>Humans</topic><topic>Insecticide Resistance</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Localization</topic><topic>Malaria</topic><topic>Malaria - transmission</topic><topic>Mitochondria</topic><topic>Models, Structural</topic><topic>Mosquito Vectors - drug effects</topic><topic>Mosquito Vectors - enzymology</topic><topic>Mosquito Vectors - genetics</topic><topic>Mosquitoes</topic><topic>Peptides</topic><topic>Pesticide resistance</topic><topic>Pharmaceutical research</topic><topic>Physiological aspects</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Sequence Alignment</topic><topic>Sequencing</topic><topic>Short Report</topic><topic>Species</topic><topic>Structural analysis</topic><topic>Structural models</topic><topic>Structure-Activity Relationship</topic><topic>Structure-activity relationships (Biochemistry)</topic><topic>Structure-function relationships</topic><topic>Therapeutic targets</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>West Nile virus</topic><topic>Yellow fever</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Soumyananda</creatorcontrib><creatorcontrib>Chhibber-Goel, Jyoti</creatorcontrib><creatorcontrib>Sharma, Amit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Parasites &amp; vectors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Soumyananda</au><au>Chhibber-Goel, Jyoti</au><au>Sharma, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue</atitle><jtitle>Parasites &amp; vectors</jtitle><addtitle>Parasit Vectors</addtitle><date>2021-12-11</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>605</spage><epage>11</epage><pages>605-11</pages><artnum>605</artnum><issn>1756-3305</issn><eissn>1756-3305</eissn><abstract>Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was &gt; 80% and in Ae. aegypti was &gt; 50%. Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34895309</pmid><doi>10.1186/s13071-021-05106-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7384-690X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-3305
ispartof Parasites & vectors, 2021-12, Vol.14 (1), p.605-11, Article 605
issn 1756-3305
1756-3305
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_792f9efc48a6474fa08bda6e12445c62
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OpenAccess)
subjects Adenosine
Aedes
Aedes - drug effects
Aedes - enzymology
Aedes - genetics
Aedes aegypti
Aedes albopictus
Aedes spp
Amino Acid Sequence
Amino acids
Amino Acyl-tRNA Synthetases - antagonists & inhibitors
Amino Acyl-tRNA Synthetases - chemistry
Amino Acyl-tRNA Synthetases - genetics
Aminoacyl-tRNA synthetases
Animals
Anopheles
Anopheles - drug effects
Anopheles - enzymology
Anopheles - genetics
Anopheles spp
Antiinfectives and antibacterials
Antimalarial agents
Aquatic insects
Binding sites
Chemical properties
Computer applications
Culicidae
Cytoplasm
Dengue
Dengue - transmission
Dengue fever
Disease transmission
Drug Delivery Systems
Drug Discovery
Drug targeting
Drug therapy
Drugs
Editing
Enzyme inhibitors
Enzymes
Genomes
Genomics
Human diseases
Humans
Insecticide Resistance
Insecticides
Insecticides - pharmacology
Localization
Malaria
Malaria - transmission
Mitochondria
Models, Structural
Mosquito Vectors - drug effects
Mosquito Vectors - enzymology
Mosquito Vectors - genetics
Mosquitoes
Peptides
Pesticide resistance
Pharmaceutical research
Physiological aspects
Protein biosynthesis
Protein synthesis
Proteins
Sequence Alignment
Sequencing
Short Report
Species
Structural analysis
Structural models
Structure-Activity Relationship
Structure-activity relationships (Biochemistry)
Structure-function relationships
Therapeutic targets
Transfer RNA
tRNA
Tropical diseases
Vector-borne diseases
Vectors
West Nile virus
Yellow fever
Zika virus
title Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20targeting%20of%20aminoacyl-tRNA%20synthetases%20in%20Anopheles%20species%20and%20Aedes%20aegypti%20that%20cause%20malaria%20and%20dengue&rft.jtitle=Parasites%20&%20vectors&rft.au=Chakraborti,%20Soumyananda&rft.date=2021-12-11&rft.volume=14&rft.issue=1&rft.spage=605&rft.epage=11&rft.pages=605-11&rft.artnum=605&rft.issn=1756-3305&rft.eissn=1756-3305&rft_id=info:doi/10.1186/s13071-021-05106-5&rft_dat=%3Cgale_doaj_%3EA693537877%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-32f595cca1e19d8666cc83d0afb4a5e69109aa0a08ffe1cc47a129f3243ee7cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611359710&rft_id=info:pmid/34895309&rft_galeid=A693537877&rfr_iscdi=true