Loading…

Design of Enzyme Loaded W/O Emulsions by Direct Membrane Emulsification for CO2 Capture

Membrane-based gas separation is a promising unit operation in a low-carbon economy due to its simplicity, ease of operation, reduced energy consumption and portability. A methodology is proposed to immobilise enzymes in stable water-in-oil (W/O) emulsions produced by direct membrane emulsification...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2022-08, Vol.12 (8), p.797
Main Authors: Mondal, Suchintan, Alke, Bhavna, de Castro, Aline Machado, Ortiz-Albo, Paloma, Syed, Usman Taqui, Crespo, João G., Brazinha, Carla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane-based gas separation is a promising unit operation in a low-carbon economy due to its simplicity, ease of operation, reduced energy consumption and portability. A methodology is proposed to immobilise enzymes in stable water-in-oil (W/O) emulsions produced by direct membrane emulsification systems and thereafter impregnated them in the pores of a membrane producing emulsion-based supported liquid membranes. The selected case-study was for biogas (CO2 and CH4) purification. Upon initial CO2 sorption studies, corn oil was chosen as a low-cost and non-toxic bulk phase (oil phase). The emulsions were prepared with Nadir® UP150 P flat-sheet polymeric membranes. The optimised emulsions consisted of 2% Tween 80 (w/w) in corn oil as the continuous phase and 0.5 g.L−1 carbonic anhydrase enzyme with 5% PEG 300 (w/w) in aqueous solution as the dispersed phase. These emulsions were impregnated onto a porous hydrophobic PVDF membrane to prepare a supported liquid membrane for gas separation. Lastly, gas permeability studies indicated that the permeability of CO2 increased by ~15% and that of CH4 decreased by ~60% when compared to the membrane without carbonic anhydrase. Thus, a proof-of-concept for enhancement of CO2 capture using emulsion-based supported liquid membrane was established.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12080797