Loading…

Bending Behavior of a Wrought Magnesium Alloy Investigated by the In Situ Pinhole Neutron Diffraction Method

The tensile twinning and detwinning behaviors of a wrought magnesium alloy have been investigated during in situ four-point bending using the state-of-the-art high spatial resolution pinhole neutron diffraction (PIND) method. The PIND method allowed us to resolve the tensile twinning/detwinning and...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2018-09, Vol.8 (9), p.348
Main Authors: Wu, Wei, Stoica, Alexandru, Yu, Dunji, Frost, Matthew, Skorpenske, Harley, An, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tensile twinning and detwinning behaviors of a wrought magnesium alloy have been investigated during in situ four-point bending using the state-of-the-art high spatial resolution pinhole neutron diffraction (PIND) method. The PIND method allowed us to resolve the tensile twinning/detwinning and lattice strain distributions across the bending sample during a loading-unloading sequence with a 0.5 mm step size. It was found that the extensive tensile twinning and detwinning occurred near the compression surface, while no tensile twinning behavior was observed in the middle layer and tension side of the bending sample. During the bending, the neutral plane shifted from the compression side to the tension side. Compared with the traditional neutron diffraction mapping method, the PIND method provides more detailed information inside the bending sample due to a higher spatial resolution.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst8090348