Loading…

Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction

ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standar...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cardiovascular medicine 2022-08, Vol.9, p.903660-903660
Main Authors: Lin, Xixiang, Yang, Feifei, Chen, Yixin, Chen, Xiaotian, Wang, Wenjun, Chen, Xu, Wang, Qiushuang, Zhang, Liwei, Guo, Huayuan, Liu, Bohan, Yu, Liheng, Pu, Haitao, Zhang, Peifang, Wu, Zhenzhou, Li, Xin, Burkhoff, Daniel, He, Kunlun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963
cites cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963
container_end_page 903660
container_issue
container_start_page 903660
container_title Frontiers in cardiovascular medicine
container_volume 9
creator Lin, Xixiang
Yang, Feifei
Chen, Yixin
Chen, Xiaotian
Wang, Wenjun
Chen, Xu
Wang, Qiushuang
Zhang, Liwei
Guo, Huayuan
Liu, Bohan
Yu, Liheng
Pu, Haitao
Zhang, Peifang
Wu, Zhenzhou
Li, Xin
Burkhoff, Daniel
He, Kunlun
description ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.
doi_str_mv 10.3389/fcvm.2022.903660
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f</doaj_id><sourcerecordid>2711840852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</originalsourceid><addsrcrecordid>eNpVkk9v1DAQxSMEolXpnWOOXLL4v50LUlUVWKkSF5C4WZOJvesqsbd2UrQfgW9NdlMQPc3ozZvfu7yqek_JhnPTfvT4NG4YYWzTEq4UeVVdMtbqhkj58_V_-0V1XcoDIYRKYaQyb6sLrohmRonL6vcd7hNC7kPaZTjsj00HxfX1zbbu3eRwCinWydfZ7ZYNhvoXDEM9prMOXUx5hCFMwZUaYl8_zhCn4APC38czG7D2c1xhIdbjcY1ccCF6yOfDu-qNh6G46-d5Vf34fPf99mtz_-3L9vbmvkHB26kxXmkFhnrDmGDCg_BctkoaKXXvkUmtuRKGouOMGk06JbzDrvOci561il9V25XbJ3iwhxxGyEebINizkPLOQp4CDs7qxU6ooqRDFEhMpx3hiNRRYlBov7A-razD3I2uRxenDMML6MtLDHu7S0-2FYLKli2AD8-AnB5nVyY7hoJuGCC6NBfLNKVGECNPVrJaMadSsvP_Yiixp0LYUyHsqRB2LQT_A_3xqz8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711840852</pqid></control><display><type>article</type><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><source>Open Access: PubMed Central</source><creator>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</creator><creatorcontrib>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</creatorcontrib><description>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</description><identifier>ISSN: 2297-055X</identifier><identifier>EISSN: 2297-055X</identifier><identifier>DOI: 10.3389/fcvm.2022.903660</identifier><identifier>PMID: 36072864</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>artificial intelligence - AI ; bedside ultrasound ; Cardiovascular Medicine ; deep learning ; echocardiography ; myocardial infarction</subject><ispartof>Frontiers in cardiovascular medicine, 2022-08, Vol.9, p.903660-903660</ispartof><rights>Copyright © 2022 Lin, Yang, Chen, Chen, Wang, Chen, Wang, Zhang, Guo, Liu, Yu, Pu, Zhang, Wu, Li, Burkhoff and He. 2022 Lin, Yang, Chen, Chen, Wang, Chen, Wang, Zhang, Guo, Liu, Yu, Pu, Zhang, Wu, Li, Burkhoff and He</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</citedby><cites>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Lin, Xixiang</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Chen, Xiaotian</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Wang, Qiushuang</creatorcontrib><creatorcontrib>Zhang, Liwei</creatorcontrib><creatorcontrib>Guo, Huayuan</creatorcontrib><creatorcontrib>Liu, Bohan</creatorcontrib><creatorcontrib>Yu, Liheng</creatorcontrib><creatorcontrib>Pu, Haitao</creatorcontrib><creatorcontrib>Zhang, Peifang</creatorcontrib><creatorcontrib>Wu, Zhenzhou</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Burkhoff, Daniel</creatorcontrib><creatorcontrib>He, Kunlun</creatorcontrib><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><title>Frontiers in cardiovascular medicine</title><description>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</description><subject>artificial intelligence - AI</subject><subject>bedside ultrasound</subject><subject>Cardiovascular Medicine</subject><subject>deep learning</subject><subject>echocardiography</subject><subject>myocardial infarction</subject><issn>2297-055X</issn><issn>2297-055X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkk9v1DAQxSMEolXpnWOOXLL4v50LUlUVWKkSF5C4WZOJvesqsbd2UrQfgW9NdlMQPc3ozZvfu7yqek_JhnPTfvT4NG4YYWzTEq4UeVVdMtbqhkj58_V_-0V1XcoDIYRKYaQyb6sLrohmRonL6vcd7hNC7kPaZTjsj00HxfX1zbbu3eRwCinWydfZ7ZYNhvoXDEM9prMOXUx5hCFMwZUaYl8_zhCn4APC38czG7D2c1xhIdbjcY1ccCF6yOfDu-qNh6G46-d5Vf34fPf99mtz_-3L9vbmvkHB26kxXmkFhnrDmGDCg_BctkoaKXXvkUmtuRKGouOMGk06JbzDrvOci561il9V25XbJ3iwhxxGyEebINizkPLOQp4CDs7qxU6ooqRDFEhMpx3hiNRRYlBov7A-razD3I2uRxenDMML6MtLDHu7S0-2FYLKli2AD8-AnB5nVyY7hoJuGCC6NBfLNKVGECNPVrJaMadSsvP_Yiixp0LYUyHsqRB2LQT_A_3xqz8</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Lin, Xixiang</creator><creator>Yang, Feifei</creator><creator>Chen, Yixin</creator><creator>Chen, Xiaotian</creator><creator>Wang, Wenjun</creator><creator>Chen, Xu</creator><creator>Wang, Qiushuang</creator><creator>Zhang, Liwei</creator><creator>Guo, Huayuan</creator><creator>Liu, Bohan</creator><creator>Yu, Liheng</creator><creator>Pu, Haitao</creator><creator>Zhang, Peifang</creator><creator>Wu, Zhenzhou</creator><creator>Li, Xin</creator><creator>Burkhoff, Daniel</creator><creator>He, Kunlun</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220822</creationdate><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><author>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial intelligence - AI</topic><topic>bedside ultrasound</topic><topic>Cardiovascular Medicine</topic><topic>deep learning</topic><topic>echocardiography</topic><topic>myocardial infarction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xixiang</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Chen, Xiaotian</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Wang, Qiushuang</creatorcontrib><creatorcontrib>Zhang, Liwei</creatorcontrib><creatorcontrib>Guo, Huayuan</creatorcontrib><creatorcontrib>Liu, Bohan</creatorcontrib><creatorcontrib>Yu, Liheng</creatorcontrib><creatorcontrib>Pu, Haitao</creatorcontrib><creatorcontrib>Zhang, Peifang</creatorcontrib><creatorcontrib>Wu, Zhenzhou</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Burkhoff, Daniel</creatorcontrib><creatorcontrib>He, Kunlun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xixiang</au><au>Yang, Feifei</au><au>Chen, Yixin</au><au>Chen, Xiaotian</au><au>Wang, Wenjun</au><au>Chen, Xu</au><au>Wang, Qiushuang</au><au>Zhang, Liwei</au><au>Guo, Huayuan</au><au>Liu, Bohan</au><au>Yu, Liheng</au><au>Pu, Haitao</au><au>Zhang, Peifang</au><au>Wu, Zhenzhou</au><au>Li, Xin</au><au>Burkhoff, Daniel</au><au>He, Kunlun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</atitle><jtitle>Frontiers in cardiovascular medicine</jtitle><date>2022-08-22</date><risdate>2022</risdate><volume>9</volume><spage>903660</spage><epage>903660</epage><pages>903660-903660</pages><issn>2297-055X</issn><eissn>2297-055X</eissn><abstract>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</abstract><pub>Frontiers Media S.A</pub><pmid>36072864</pmid><doi>10.3389/fcvm.2022.903660</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2297-055X
ispartof Frontiers in cardiovascular medicine, 2022-08, Vol.9, p.903660-903660
issn 2297-055X
2297-055X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f
source Open Access: PubMed Central
subjects artificial intelligence - AI
bedside ultrasound
Cardiovascular Medicine
deep learning
echocardiography
myocardial infarction
title Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Echocardiography-based%20AI%20detection%20of%20regional%20wall%20motion%20abnormalities%20and%20quantification%20of%20cardiac%20function%20in%20myocardial%20infarction&rft.jtitle=Frontiers%20in%20cardiovascular%20medicine&rft.au=Lin,%20Xixiang&rft.date=2022-08-22&rft.volume=9&rft.spage=903660&rft.epage=903660&rft.pages=903660-903660&rft.issn=2297-055X&rft.eissn=2297-055X&rft_id=info:doi/10.3389/fcvm.2022.903660&rft_dat=%3Cproquest_doaj_%3E2711840852%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711840852&rft_id=info:pmid/36072864&rfr_iscdi=true