Loading…
Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction
ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standar...
Saved in:
Published in: | Frontiers in cardiovascular medicine 2022-08, Vol.9, p.903660-903660 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963 |
container_end_page | 903660 |
container_issue | |
container_start_page | 903660 |
container_title | Frontiers in cardiovascular medicine |
container_volume | 9 |
creator | Lin, Xixiang Yang, Feifei Chen, Yixin Chen, Xiaotian Wang, Wenjun Chen, Xu Wang, Qiushuang Zhang, Liwei Guo, Huayuan Liu, Bohan Yu, Liheng Pu, Haitao Zhang, Peifang Wu, Zhenzhou Li, Xin Burkhoff, Daniel He, Kunlun |
description | ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function. |
doi_str_mv | 10.3389/fcvm.2022.903660 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f</doaj_id><sourcerecordid>2711840852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</originalsourceid><addsrcrecordid>eNpVkk9v1DAQxSMEolXpnWOOXLL4v50LUlUVWKkSF5C4WZOJvesqsbd2UrQfgW9NdlMQPc3ozZvfu7yqek_JhnPTfvT4NG4YYWzTEq4UeVVdMtbqhkj58_V_-0V1XcoDIYRKYaQyb6sLrohmRonL6vcd7hNC7kPaZTjsj00HxfX1zbbu3eRwCinWydfZ7ZYNhvoXDEM9prMOXUx5hCFMwZUaYl8_zhCn4APC38czG7D2c1xhIdbjcY1ccCF6yOfDu-qNh6G46-d5Vf34fPf99mtz_-3L9vbmvkHB26kxXmkFhnrDmGDCg_BctkoaKXXvkUmtuRKGouOMGk06JbzDrvOci561il9V25XbJ3iwhxxGyEebINizkPLOQp4CDs7qxU6ooqRDFEhMpx3hiNRRYlBov7A-razD3I2uRxenDMML6MtLDHu7S0-2FYLKli2AD8-AnB5nVyY7hoJuGCC6NBfLNKVGECNPVrJaMadSsvP_Yiixp0LYUyHsqRB2LQT_A_3xqz8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711840852</pqid></control><display><type>article</type><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><source>Open Access: PubMed Central</source><creator>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</creator><creatorcontrib>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</creatorcontrib><description>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</description><identifier>ISSN: 2297-055X</identifier><identifier>EISSN: 2297-055X</identifier><identifier>DOI: 10.3389/fcvm.2022.903660</identifier><identifier>PMID: 36072864</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>artificial intelligence - AI ; bedside ultrasound ; Cardiovascular Medicine ; deep learning ; echocardiography ; myocardial infarction</subject><ispartof>Frontiers in cardiovascular medicine, 2022-08, Vol.9, p.903660-903660</ispartof><rights>Copyright © 2022 Lin, Yang, Chen, Chen, Wang, Chen, Wang, Zhang, Guo, Liu, Yu, Pu, Zhang, Wu, Li, Burkhoff and He. 2022 Lin, Yang, Chen, Chen, Wang, Chen, Wang, Zhang, Guo, Liu, Yu, Pu, Zhang, Wu, Li, Burkhoff and He</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</citedby><cites>FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Lin, Xixiang</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Chen, Xiaotian</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Wang, Qiushuang</creatorcontrib><creatorcontrib>Zhang, Liwei</creatorcontrib><creatorcontrib>Guo, Huayuan</creatorcontrib><creatorcontrib>Liu, Bohan</creatorcontrib><creatorcontrib>Yu, Liheng</creatorcontrib><creatorcontrib>Pu, Haitao</creatorcontrib><creatorcontrib>Zhang, Peifang</creatorcontrib><creatorcontrib>Wu, Zhenzhou</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Burkhoff, Daniel</creatorcontrib><creatorcontrib>He, Kunlun</creatorcontrib><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><title>Frontiers in cardiovascular medicine</title><description>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</description><subject>artificial intelligence - AI</subject><subject>bedside ultrasound</subject><subject>Cardiovascular Medicine</subject><subject>deep learning</subject><subject>echocardiography</subject><subject>myocardial infarction</subject><issn>2297-055X</issn><issn>2297-055X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkk9v1DAQxSMEolXpnWOOXLL4v50LUlUVWKkSF5C4WZOJvesqsbd2UrQfgW9NdlMQPc3ozZvfu7yqek_JhnPTfvT4NG4YYWzTEq4UeVVdMtbqhkj58_V_-0V1XcoDIYRKYaQyb6sLrohmRonL6vcd7hNC7kPaZTjsj00HxfX1zbbu3eRwCinWydfZ7ZYNhvoXDEM9prMOXUx5hCFMwZUaYl8_zhCn4APC38czG7D2c1xhIdbjcY1ccCF6yOfDu-qNh6G46-d5Vf34fPf99mtz_-3L9vbmvkHB26kxXmkFhnrDmGDCg_BctkoaKXXvkUmtuRKGouOMGk06JbzDrvOci561il9V25XbJ3iwhxxGyEebINizkPLOQp4CDs7qxU6ooqRDFEhMpx3hiNRRYlBov7A-razD3I2uRxenDMML6MtLDHu7S0-2FYLKli2AD8-AnB5nVyY7hoJuGCC6NBfLNKVGECNPVrJaMadSsvP_Yiixp0LYUyHsqRB2LQT_A_3xqz8</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Lin, Xixiang</creator><creator>Yang, Feifei</creator><creator>Chen, Yixin</creator><creator>Chen, Xiaotian</creator><creator>Wang, Wenjun</creator><creator>Chen, Xu</creator><creator>Wang, Qiushuang</creator><creator>Zhang, Liwei</creator><creator>Guo, Huayuan</creator><creator>Liu, Bohan</creator><creator>Yu, Liheng</creator><creator>Pu, Haitao</creator><creator>Zhang, Peifang</creator><creator>Wu, Zhenzhou</creator><creator>Li, Xin</creator><creator>Burkhoff, Daniel</creator><creator>He, Kunlun</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220822</creationdate><title>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</title><author>Lin, Xixiang ; Yang, Feifei ; Chen, Yixin ; Chen, Xiaotian ; Wang, Wenjun ; Chen, Xu ; Wang, Qiushuang ; Zhang, Liwei ; Guo, Huayuan ; Liu, Bohan ; Yu, Liheng ; Pu, Haitao ; Zhang, Peifang ; Wu, Zhenzhou ; Li, Xin ; Burkhoff, Daniel ; He, Kunlun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial intelligence - AI</topic><topic>bedside ultrasound</topic><topic>Cardiovascular Medicine</topic><topic>deep learning</topic><topic>echocardiography</topic><topic>myocardial infarction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xixiang</creatorcontrib><creatorcontrib>Yang, Feifei</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Chen, Xiaotian</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Wang, Qiushuang</creatorcontrib><creatorcontrib>Zhang, Liwei</creatorcontrib><creatorcontrib>Guo, Huayuan</creatorcontrib><creatorcontrib>Liu, Bohan</creatorcontrib><creatorcontrib>Yu, Liheng</creatorcontrib><creatorcontrib>Pu, Haitao</creatorcontrib><creatorcontrib>Zhang, Peifang</creatorcontrib><creatorcontrib>Wu, Zhenzhou</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Burkhoff, Daniel</creatorcontrib><creatorcontrib>He, Kunlun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xixiang</au><au>Yang, Feifei</au><au>Chen, Yixin</au><au>Chen, Xiaotian</au><au>Wang, Wenjun</au><au>Chen, Xu</au><au>Wang, Qiushuang</au><au>Zhang, Liwei</au><au>Guo, Huayuan</au><au>Liu, Bohan</au><au>Yu, Liheng</au><au>Pu, Haitao</au><au>Zhang, Peifang</au><au>Wu, Zhenzhou</au><au>Li, Xin</au><au>Burkhoff, Daniel</au><au>He, Kunlun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction</atitle><jtitle>Frontiers in cardiovascular medicine</jtitle><date>2022-08-22</date><risdate>2022</risdate><volume>9</volume><spage>903660</spage><epage>903660</epage><pages>903660-903660</pages><issn>2297-055X</issn><eissn>2297-055X</eissn><abstract>ObjectiveTo compare the performance of a newly developed deep learning (DL) framework for automatic detection of regional wall motion abnormalities (RWMAs) for patients presenting with the suspicion of myocardial infarction from echocardiograms obtained with portable bedside equipment versus standard equipment. BackgroundBedside echocardiography is increasingly used by emergency department setting for rapid triage of patients presenting with chest pain. However, compared to images obtained with standard equipment, lower image quality from bedside equipment can lead to improper diagnosis. To overcome these limitations, we developed an automatic workflow to process echocardiograms, including view selection, segmentation, detection of RWMAs and quantification of cardiac function that was trained and validated on image obtained from bedside and standard equipment. MethodsWe collected 4,142 examinations from one hospital as training and internal testing dataset and 2,811 examinations from other hospital as the external test dataset. For data pre-processing, we adopted DL model to automatically recognize three apical views and segment the left ventricle. Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. ResultsThe view selection model identified the three apical views with an average accuracy of 96%. The segmentation model provided good agreement with manual segmentation, achieving an average Dice of 0.89. In the internal test dataset, the model detected RWMAs with AUC of 0.91 and 0.88 respectively for standard and bedside ultrasound. In the external test dataset, the AUC were 0.90 and 0.85. The automatic cardiac function measurements agreed with echocardiographic report values (e. g., mean bias is 4% for left ventricular ejection fraction). ConclusionWe present a fully automated echocardiography pipeline applicable to both standard and bedside ultrasound with various functions, including view selection, quality control, segmentation, detection of the region of wall motion abnormalities and quantification of cardiac function.</abstract><pub>Frontiers Media S.A</pub><pmid>36072864</pmid><doi>10.3389/fcvm.2022.903660</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2297-055X |
ispartof | Frontiers in cardiovascular medicine, 2022-08, Vol.9, p.903660-903660 |
issn | 2297-055X 2297-055X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_796301610bcc4c08b7e03cc1e108c47f |
source | Open Access: PubMed Central |
subjects | artificial intelligence - AI bedside ultrasound Cardiovascular Medicine deep learning echocardiography myocardial infarction |
title | Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Echocardiography-based%20AI%20detection%20of%20regional%20wall%20motion%20abnormalities%20and%20quantification%20of%20cardiac%20function%20in%20myocardial%20infarction&rft.jtitle=Frontiers%20in%20cardiovascular%20medicine&rft.au=Lin,%20Xixiang&rft.date=2022-08-22&rft.volume=9&rft.spage=903660&rft.epage=903660&rft.pages=903660-903660&rft.issn=2297-055X&rft.eissn=2297-055X&rft_id=info:doi/10.3389/fcvm.2022.903660&rft_dat=%3Cproquest_doaj_%3E2711840852%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-8f676a81f822424fa4f359658557dfc257736481ce321870b64fecbbf334d2963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711840852&rft_id=info:pmid/36072864&rfr_iscdi=true |