Loading…

A Hierarchical Estimator for Object Tracking

A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independent...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), Article 592960
Main Authors: Wu, Chin-Wen, Chung, Yi-Nung, Chung, Pau-Choo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3
cites cdi_FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3
container_end_page
container_issue 1
container_start_page
container_title EURASIP journal on advances in signal processing
container_volume 2010
creator Wu, Chin-Wen
Chung, Yi-Nung
Chung, Pau-Choo
description A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independently, the proposed approach combines local and global estimates into one for mutual compensation. Consequently, the Kalman-filter-based data fusion optimally adjusts the fusion gain based on environment conditions derived from each local estimator. The global estimation outputs are included in the local estimation process. Closed-loop mutual compensation between the local and global estimations is thus achieved to obtain higher tracking accuracy. A set of image sequences from multiple views are applied to evaluate performance. Computer simulation and experimental results indicate that the proposed approach successfully tracks objects.
doi_str_mv 10.1155/2010/592960
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7980d17ecc2d4b91b85181140824ddf3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7980d17ecc2d4b91b85181140824ddf3</doaj_id><sourcerecordid>855688291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqUw8QeyMdDQs2M79lhVhSJV6tLdcvxREtKk2OnAv8clCDEwnO50evTe6UHoHsMTxozNCWCYM0kkhws0wVyUOccCLv_M1-gmxgaAcQJkgmaLbF27oIN5q41us1Uc6oMe-pD5VNuqcWbIdkGb97rb36Irr9vo7n76FO2eV7vlOt9sX16Xi01uKLAhZ64AbLzQDJxnlBbcW1bIsiROAsGVK3maaSklLQRQbr0F0ELTwmgCtpii1zHW9rpRx5AeCp-q17X6XvRhr3QYatM6VUoBFpfOGGJpJXElGBYYUxCEWuuLlPUwZh1D_3FycVCHOhrXtrpz_SkqwRgXgkicyMeRNKGPMTj_exmDOttVZ7tqtJvo2UjHRHV7F1TTn0KXrPyLfwFMO3aC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855688291</pqid></control><display><type>article</type><title>A Hierarchical Estimator for Object Tracking</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Wu, Chin-Wen ; Chung, Yi-Nung ; Chung, Pau-Choo</creator><creatorcontrib>Wu, Chin-Wen ; Chung, Yi-Nung ; Chung, Pau-Choo</creatorcontrib><description>A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independently, the proposed approach combines local and global estimates into one for mutual compensation. Consequently, the Kalman-filter-based data fusion optimally adjusts the fusion gain based on environment conditions derived from each local estimator. The global estimation outputs are included in the local estimation process. Closed-loop mutual compensation between the local and global estimations is thus achieved to obtain higher tracking accuracy. A set of image sequences from multiple views are applied to evaluate performance. Computer simulation and experimental results indicate that the proposed approach successfully tracks objects.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/2010/592960</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cameras ; Compensation ; Data integration ; Engineering ; Estimates ; Estimators ; Gain ; Optimization ; Quantum Information Technology ; Research Article ; Signal,Image and Speech Processing ; Spintronics ; Tracking ; Video Analysis for Human Behavior Understanding</subject><ispartof>EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 592960</ispartof><rights>Chin-Wen Wu et al. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3</citedby><cites>FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids></links><search><creatorcontrib>Wu, Chin-Wen</creatorcontrib><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chung, Pau-Choo</creatorcontrib><title>A Hierarchical Estimator for Object Tracking</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independently, the proposed approach combines local and global estimates into one for mutual compensation. Consequently, the Kalman-filter-based data fusion optimally adjusts the fusion gain based on environment conditions derived from each local estimator. The global estimation outputs are included in the local estimation process. Closed-loop mutual compensation between the local and global estimations is thus achieved to obtain higher tracking accuracy. A set of image sequences from multiple views are applied to evaluate performance. Computer simulation and experimental results indicate that the proposed approach successfully tracks objects.</description><subject>Cameras</subject><subject>Compensation</subject><subject>Data integration</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Gain</subject><subject>Optimization</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><subject>Tracking</subject><subject>Video Analysis for Human Behavior Understanding</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkD1PwzAQhi0EEqUw8QeyMdDQs2M79lhVhSJV6tLdcvxREtKk2OnAv8clCDEwnO50evTe6UHoHsMTxozNCWCYM0kkhws0wVyUOccCLv_M1-gmxgaAcQJkgmaLbF27oIN5q41us1Uc6oMe-pD5VNuqcWbIdkGb97rb36Irr9vo7n76FO2eV7vlOt9sX16Xi01uKLAhZ64AbLzQDJxnlBbcW1bIsiROAsGVK3maaSklLQRQbr0F0ELTwmgCtpii1zHW9rpRx5AeCp-q17X6XvRhr3QYatM6VUoBFpfOGGJpJXElGBYYUxCEWuuLlPUwZh1D_3FycVCHOhrXtrpz_SkqwRgXgkicyMeRNKGPMTj_exmDOttVZ7tqtJvo2UjHRHV7F1TTn0KXrPyLfwFMO3aC</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Wu, Chin-Wen</creator><creator>Chung, Yi-Nung</creator><creator>Chung, Pau-Choo</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>A Hierarchical Estimator for Object Tracking</title><author>Wu, Chin-Wen ; Chung, Yi-Nung ; Chung, Pau-Choo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Compensation</topic><topic>Data integration</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Gain</topic><topic>Optimization</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><topic>Tracking</topic><topic>Video Analysis for Human Behavior Understanding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chin-Wen</creatorcontrib><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chung, Pau-Choo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chin-Wen</au><au>Chung, Yi-Nung</au><au>Chung, Pau-Choo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Estimator for Object Tracking</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>1</issue><artnum>592960</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independently, the proposed approach combines local and global estimates into one for mutual compensation. Consequently, the Kalman-filter-based data fusion optimally adjusts the fusion gain based on environment conditions derived from each local estimator. The global estimation outputs are included in the local estimation process. Closed-loop mutual compensation between the local and global estimations is thus achieved to obtain higher tracking accuracy. A set of image sequences from multiple views are applied to evaluate performance. Computer simulation and experimental results indicate that the proposed approach successfully tracks objects.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1155/2010/592960</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 592960
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7980d17ecc2d4b91b85181140824ddf3
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Cameras
Compensation
Data integration
Engineering
Estimates
Estimators
Gain
Optimization
Quantum Information Technology
Research Article
Signal,Image and Speech Processing
Spintronics
Tracking
Video Analysis for Human Behavior Understanding
title A Hierarchical Estimator for Object Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Estimator%20for%20Object%20Tracking&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Wu,%20Chin-Wen&rft.date=2010-01-01&rft.volume=2010&rft.issue=1&rft.artnum=592960&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/2010/592960&rft_dat=%3Cproquest_doaj_%3E855688291%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-5e301cf8a50ef54436fd539772e9021be767724799438046dfd00a8a43ca20d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855688291&rft_id=info:pmid/&rfr_iscdi=true