Loading…

External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback

This article studies a robust controller capable of responding to external forces applied to a quadruped robot. Unlike conventional methods, our controller utilizes information about external forces to achieve better performance. We incorporate disturbance feedback into the robot dynamics and calcul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.157531-157539
Main Authors: Kang, Jeonguk, Kim, Hyun-Bin, Ham, Byeong-Il, Kim, Kyung-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-e044d7db9d7c627887f17cb64ae797ebca0e09d9dcdc0b501a3146282f2f41f3
container_end_page 157539
container_issue
container_start_page 157531
container_title IEEE access
container_volume 12
creator Kang, Jeonguk
Kim, Hyun-Bin
Ham, Byeong-Il
Kim, Kyung-Soo
description This article studies a robust controller capable of responding to external forces applied to a quadruped robot. Unlike conventional methods, our controller utilizes information about external forces to achieve better performance. We incorporate disturbance feedback into the robot dynamics and calculate a balancing index that considers the estimated force information to ensure coverage of the robot's support polygon. This approach allows the robot to adjust its legs in response to external forces, redistribute ground reaction forces, and enhance stability, enabling it to handle greater pressures. Additionally, it increases the amount of traction force generated while maintaining posture. These capabilities are expected to maximize disturbance resilience, enhance task performance, and improve stability during interactions with external environments, ultimately contributing to improved mobility of the robot in real-world scenarios.
doi_str_mv 10.1109/ACCESS.2024.3485094
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_799bbc04d93c42dfbe61ff5bfbb1027d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731682</ieee_id><doaj_id>oai_doaj_org_article_799bbc04d93c42dfbe61ff5bfbb1027d</doaj_id><sourcerecordid>3123123214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e044d7db9d7c627887f17cb64ae797ebca0e09d9dcdc0b501a3146282f2f41f3</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUILDUm-oH0Q9NmubrtaPZqtnQYMgcbvQpfRRo6zciW5tP36yNlQMgzMhXPOwJym-UzwkhAsv62GYf3wsKSY8iXjfYslv2guKenkgrWs-_Cu_9Tc5LzHNfq6asVlM67_FEiTPqBNTBbQyuljCb8BDXEqKR5QmNAWxhEc-hlNLBntHlM8jY8VX6cCR3RfCc_hny4hTkhPDn0PuZyS0VPV2wA4o-3TdfPR60OGm7d61ew2693wY7G9v70bVtuFpb0sC8CcO-GMdMJ2VPS98ERY03ENQgowVmPA0klnncWmxUQzwjvaU089J55dNXezrIt6r44pPOv0V0Ud1OsiplHpVII9gBJSGmMxd5JZTp030BHvW-ONIZgKV7W-zlrHFH-dIBe1j6fzq7JihJ6TEl5RbEbZFHNO4P9fJVid_VGzP-rsj3rzp7K-zKwAAO8YgpGup-wFhU2NaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123123214</pqid></control><display><type>article</type><title>External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback</title><source>IEEE Xplore Open Access Journals</source><creator>Kang, Jeonguk ; Kim, Hyun-Bin ; Ham, Byeong-Il ; Kim, Kyung-Soo</creator><creatorcontrib>Kang, Jeonguk ; Kim, Hyun-Bin ; Ham, Byeong-Il ; Kim, Kyung-Soo</creatorcontrib><description>This article studies a robust controller capable of responding to external forces applied to a quadruped robot. Unlike conventional methods, our controller utilizes information about external forces to achieve better performance. We incorporate disturbance feedback into the robot dynamics and calculate a balancing index that considers the estimated force information to ensure coverage of the robot's support polygon. This approach allows the robot to adjust its legs in response to external forces, redistribute ground reaction forces, and enhance stability, enabling it to handle greater pressures. Additionally, it increases the amount of traction force generated while maintaining posture. These capabilities are expected to maximize disturbance resilience, enhance task performance, and improve stability during interactions with external environments, ultimately contributing to improved mobility of the robot in real-world scenarios.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3485094</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Controllers ; External pressure ; Feedback ; Force ; Indexes ; Legged locomotion ; Odometry ; Quadrupedal robots ; Robot control ; Robot dynamics ; Robot kinematics ; Robots ; Robust control ; Stability ; Traction force ; Uncertainty ; Visualization</subject><ispartof>IEEE access, 2024, Vol.12, p.157531-157539</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-e044d7db9d7c627887f17cb64ae797ebca0e09d9dcdc0b501a3146282f2f41f3</cites><orcidid>0000-0002-5605-1152 ; 0009-0001-7987-1137 ; 0000-0001-9540-9172 ; 0000-0003-4856-1096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731682$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kang, Jeonguk</creatorcontrib><creatorcontrib>Kim, Hyun-Bin</creatorcontrib><creatorcontrib>Ham, Byeong-Il</creatorcontrib><creatorcontrib>Kim, Kyung-Soo</creatorcontrib><title>External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article studies a robust controller capable of responding to external forces applied to a quadruped robot. Unlike conventional methods, our controller utilizes information about external forces to achieve better performance. We incorporate disturbance feedback into the robot dynamics and calculate a balancing index that considers the estimated force information to ensure coverage of the robot's support polygon. This approach allows the robot to adjust its legs in response to external forces, redistribute ground reaction forces, and enhance stability, enabling it to handle greater pressures. Additionally, it increases the amount of traction force generated while maintaining posture. These capabilities are expected to maximize disturbance resilience, enhance task performance, and improve stability during interactions with external environments, ultimately contributing to improved mobility of the robot in real-world scenarios.</description><subject>Adaptive control</subject><subject>Controllers</subject><subject>External pressure</subject><subject>Feedback</subject><subject>Force</subject><subject>Indexes</subject><subject>Legged locomotion</subject><subject>Odometry</subject><subject>Quadrupedal robots</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Robust control</subject><subject>Stability</subject><subject>Traction force</subject><subject>Uncertainty</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUILDUm-oH0Q9NmubrtaPZqtnQYMgcbvQpfRRo6zciW5tP36yNlQMgzMhXPOwJym-UzwkhAsv62GYf3wsKSY8iXjfYslv2guKenkgrWs-_Cu_9Tc5LzHNfq6asVlM67_FEiTPqBNTBbQyuljCb8BDXEqKR5QmNAWxhEc-hlNLBntHlM8jY8VX6cCR3RfCc_hny4hTkhPDn0PuZyS0VPV2wA4o-3TdfPR60OGm7d61ew2693wY7G9v70bVtuFpb0sC8CcO-GMdMJ2VPS98ERY03ENQgowVmPA0klnncWmxUQzwjvaU089J55dNXezrIt6r44pPOv0V0Ud1OsiplHpVII9gBJSGmMxd5JZTp030BHvW-ONIZgKV7W-zlrHFH-dIBe1j6fzq7JihJ6TEl5RbEbZFHNO4P9fJVid_VGzP-rsj3rzp7K-zKwAAO8YgpGup-wFhU2NaQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kang, Jeonguk</creator><creator>Kim, Hyun-Bin</creator><creator>Ham, Byeong-Il</creator><creator>Kim, Kyung-Soo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5605-1152</orcidid><orcidid>https://orcid.org/0009-0001-7987-1137</orcidid><orcidid>https://orcid.org/0000-0001-9540-9172</orcidid><orcidid>https://orcid.org/0000-0003-4856-1096</orcidid></search><sort><creationdate>2024</creationdate><title>External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback</title><author>Kang, Jeonguk ; Kim, Hyun-Bin ; Ham, Byeong-Il ; Kim, Kyung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e044d7db9d7c627887f17cb64ae797ebca0e09d9dcdc0b501a3146282f2f41f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Controllers</topic><topic>External pressure</topic><topic>Feedback</topic><topic>Force</topic><topic>Indexes</topic><topic>Legged locomotion</topic><topic>Odometry</topic><topic>Quadrupedal robots</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Robust control</topic><topic>Stability</topic><topic>Traction force</topic><topic>Uncertainty</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jeonguk</creatorcontrib><creatorcontrib>Kim, Hyun-Bin</creatorcontrib><creatorcontrib>Ham, Byeong-Il</creatorcontrib><creatorcontrib>Kim, Kyung-Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jeonguk</au><au>Kim, Hyun-Bin</au><au>Ham, Byeong-Il</au><au>Kim, Kyung-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>157531</spage><epage>157539</epage><pages>157531-157539</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article studies a robust controller capable of responding to external forces applied to a quadruped robot. Unlike conventional methods, our controller utilizes information about external forces to achieve better performance. We incorporate disturbance feedback into the robot dynamics and calculate a balancing index that considers the estimated force information to ensure coverage of the robot's support polygon. This approach allows the robot to adjust its legs in response to external forces, redistribute ground reaction forces, and enhance stability, enabling it to handle greater pressures. Additionally, it increases the amount of traction force generated while maintaining posture. These capabilities are expected to maximize disturbance resilience, enhance task performance, and improve stability during interactions with external environments, ultimately contributing to improved mobility of the robot in real-world scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3485094</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5605-1152</orcidid><orcidid>https://orcid.org/0009-0001-7987-1137</orcidid><orcidid>https://orcid.org/0000-0001-9540-9172</orcidid><orcidid>https://orcid.org/0000-0003-4856-1096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.157531-157539
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_799bbc04d93c42dfbe61ff5bfbb1027d
source IEEE Xplore Open Access Journals
subjects Adaptive control
Controllers
External pressure
Feedback
Force
Indexes
Legged locomotion
Odometry
Quadrupedal robots
Robot control
Robot dynamics
Robot kinematics
Robots
Robust control
Stability
Traction force
Uncertainty
Visualization
title External Force Adaptive Control in Legged Robots Through Footstep Optimization and Disturbance Feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20Force%20Adaptive%20Control%20in%20Legged%20Robots%20Through%20Footstep%20Optimization%20and%20Disturbance%20Feedback&rft.jtitle=IEEE%20access&rft.au=Kang,%20Jeonguk&rft.date=2024&rft.volume=12&rft.spage=157531&rft.epage=157539&rft.pages=157531-157539&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3485094&rft_dat=%3Cproquest_doaj_%3E3123123214%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-e044d7db9d7c627887f17cb64ae797ebca0e09d9dcdc0b501a3146282f2f41f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123123214&rft_id=info:pmid/&rft_ieee_id=10731682&rfr_iscdi=true