Loading…
Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway
Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protect...
Saved in:
Published in: | Molecular therapy. Nucleic acids 2018-12, Vol.13, p.189-197 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03 |
container_end_page | 197 |
container_issue | |
container_start_page | 189 |
container_title | Molecular therapy. Nucleic acids |
container_volume | 13 |
creator | Zhang, Ying Liu, Xue Zhang, Lu Li, Xuelian Zhou, Zhongqiu Jiao, Lei Shao, Yingchun Li, Mengmeng Leng, Bing Zhou, Yuhong Liu, Tianyi Liu, Qiushuang Shan, Hongli Du, Zhimin |
description | Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3′ UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP β directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP β and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP β/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury. |
doi_str_mv | 10.1016/j.omtn.2018.09.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79a7ca8a898a4df0917ff71fbec98610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2162253118302403</els_id><doaj_id>oai_doaj_org_article_79a7ca8a898a4df0917ff71fbec98610</doaj_id><sourcerecordid>2116843107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03</originalsourceid><addsrcrecordid>eNp9kU1r3DAQQE1paUKaP9CTj714o5Ety4JSKEubLKRkCe1ZjPWxq8W2tpKc4n9fbTeU5lJdNEgzbzR6RfEeyAoItDeHlR_TtKIEuhURK0LgVXFJoaUVZTW8_ie-KK5jPJC8WgK0pW-Li5pQQaEhl4X9ZpL1YXRTuQ0-GZViiTt0U0zlHX2g1WbSszK6XGPQzo-LV0sy5WY6zGEp-yVHe9e75KZdmfamHN1jBVjVx5vbx61oyi2m_S9c3hVvLA7RXD_vV8WPr1--r--q-4fbzfrzfaUa0aVKEM0YMm0t2h4ReU2BsZ5pTvLQuuNGMEsYUI3Y9kbXtGVdjYwI3WvRk_qq2Jy52uNBHoMbMSzSo5N_DnzYSQzJqcFILpAr7LATHTbaEgHcWg62N0p0LZxYn86s49yPRiszpYDDC-jLm8nt5c4_yRY4bXiTAR-eAcH_nE1McnRRmWHAyfg5SgrQdk0NhOdUek5VwccYjP3bBog8-Zb58dm3PPmWRMjsOxd9PBeZ_KNPzgQZlTNTtuVCFplHdv8r_w1AtrKf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116843107</pqid></control><display><type>article</type><title>Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>ScienceDirect Journals</source><creator>Zhang, Ying ; Liu, Xue ; Zhang, Lu ; Li, Xuelian ; Zhou, Zhongqiu ; Jiao, Lei ; Shao, Yingchun ; Li, Mengmeng ; Leng, Bing ; Zhou, Yuhong ; Liu, Tianyi ; Liu, Qiushuang ; Shan, Hongli ; Du, Zhimin</creator><creatorcontrib>Zhang, Ying ; Liu, Xue ; Zhang, Lu ; Li, Xuelian ; Zhou, Zhongqiu ; Jiao, Lei ; Shao, Yingchun ; Li, Mengmeng ; Leng, Bing ; Zhou, Yuhong ; Liu, Tianyi ; Liu, Qiushuang ; Shan, Hongli ; Du, Zhimin</creatorcontrib><description>Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3′ UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP β directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP β and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP β/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury.</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1016/j.omtn.2018.09.001</identifier><identifier>PMID: 30292140</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>endoplasmic reticulum stress ; ischemia-reperfusion injury ; microRNA</subject><ispartof>Molecular therapy. Nucleic acids, 2018-12, Vol.13, p.189-197</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03</citedby><cites>FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2162253118302403$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,36992,45759,53769,53771</link.rule.ids></links><search><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Xue</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Xuelian</creatorcontrib><creatorcontrib>Zhou, Zhongqiu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Shao, Yingchun</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Leng, Bing</creatorcontrib><creatorcontrib>Zhou, Yuhong</creatorcontrib><creatorcontrib>Liu, Tianyi</creatorcontrib><creatorcontrib>Liu, Qiushuang</creatorcontrib><creatorcontrib>Shan, Hongli</creatorcontrib><creatorcontrib>Du, Zhimin</creatorcontrib><title>Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway</title><title>Molecular therapy. Nucleic acids</title><description>Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3′ UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP β directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP β and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP β/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury.</description><subject>endoplasmic reticulum stress</subject><subject>ischemia-reperfusion injury</subject><subject>microRNA</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQQE1paUKaP9CTj714o5Ety4JSKEubLKRkCe1ZjPWxq8W2tpKc4n9fbTeU5lJdNEgzbzR6RfEeyAoItDeHlR_TtKIEuhURK0LgVXFJoaUVZTW8_ie-KK5jPJC8WgK0pW-Li5pQQaEhl4X9ZpL1YXRTuQ0-GZViiTt0U0zlHX2g1WbSszK6XGPQzo-LV0sy5WY6zGEp-yVHe9e75KZdmfamHN1jBVjVx5vbx61oyi2m_S9c3hVvLA7RXD_vV8WPr1--r--q-4fbzfrzfaUa0aVKEM0YMm0t2h4ReU2BsZ5pTvLQuuNGMEsYUI3Y9kbXtGVdjYwI3WvRk_qq2Jy52uNBHoMbMSzSo5N_DnzYSQzJqcFILpAr7LATHTbaEgHcWg62N0p0LZxYn86s49yPRiszpYDDC-jLm8nt5c4_yRY4bXiTAR-eAcH_nE1McnRRmWHAyfg5SgrQdk0NhOdUek5VwccYjP3bBog8-Zb58dm3PPmWRMjsOxd9PBeZ_KNPzgQZlTNTtuVCFplHdv8r_w1AtrKf</recordid><startdate>20181207</startdate><enddate>20181207</enddate><creator>Zhang, Ying</creator><creator>Liu, Xue</creator><creator>Zhang, Lu</creator><creator>Li, Xuelian</creator><creator>Zhou, Zhongqiu</creator><creator>Jiao, Lei</creator><creator>Shao, Yingchun</creator><creator>Li, Mengmeng</creator><creator>Leng, Bing</creator><creator>Zhou, Yuhong</creator><creator>Liu, Tianyi</creator><creator>Liu, Qiushuang</creator><creator>Shan, Hongli</creator><creator>Du, Zhimin</creator><general>Elsevier Inc</general><general>American Society of Gene & Cell Therapy</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181207</creationdate><title>Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway</title><author>Zhang, Ying ; Liu, Xue ; Zhang, Lu ; Li, Xuelian ; Zhou, Zhongqiu ; Jiao, Lei ; Shao, Yingchun ; Li, Mengmeng ; Leng, Bing ; Zhou, Yuhong ; Liu, Tianyi ; Liu, Qiushuang ; Shan, Hongli ; Du, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>endoplasmic reticulum stress</topic><topic>ischemia-reperfusion injury</topic><topic>microRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Xue</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Xuelian</creatorcontrib><creatorcontrib>Zhou, Zhongqiu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Shao, Yingchun</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Leng, Bing</creatorcontrib><creatorcontrib>Zhou, Yuhong</creatorcontrib><creatorcontrib>Liu, Tianyi</creatorcontrib><creatorcontrib>Liu, Qiushuang</creatorcontrib><creatorcontrib>Shan, Hongli</creatorcontrib><creatorcontrib>Du, Zhimin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ying</au><au>Liu, Xue</au><au>Zhang, Lu</au><au>Li, Xuelian</au><au>Zhou, Zhongqiu</au><au>Jiao, Lei</au><au>Shao, Yingchun</au><au>Li, Mengmeng</au><au>Leng, Bing</au><au>Zhou, Yuhong</au><au>Liu, Tianyi</au><au>Liu, Qiushuang</au><au>Shan, Hongli</au><au>Du, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><date>2018-12-07</date><risdate>2018</risdate><volume>13</volume><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3′ UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP β directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP β and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP β/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury.</abstract><pub>Elsevier Inc</pub><pmid>30292140</pmid><doi>10.1016/j.omtn.2018.09.001</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-2531 |
ispartof | Molecular therapy. Nucleic acids, 2018-12, Vol.13, p.189-197 |
issn | 2162-2531 2162-2531 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_79a7ca8a898a4df0917ff71fbec98610 |
source | Open Access: PubMed Central; Publicly Available Content Database; ScienceDirect Journals |
subjects | endoplasmic reticulum stress ischemia-reperfusion injury microRNA |
title | Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20Protects%20against%20H2O2-Induced%20Cardiomyocyte%20Injury%20by%20Inhibiting%20the%20miR-1a-3p/GRP94%20Pathway&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Zhang,%20Ying&rft.date=2018-12-07&rft.volume=13&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1016/j.omtn.2018.09.001&rft_dat=%3Cproquest_doaj_%3E2116843107%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-90d55a5dffafbaaa732155b5d70101d87e95f0512daa6bed326583a509dbd9b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116843107&rft_id=info:pmid/30292140&rfr_iscdi=true |