Loading…
Extended Representation of Mueller Matrices
The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of nondepolarizing constituents provides a general framework for parallel decompositions of polarimetric interactions. Even though arbitrary decomposition can be performed through an infinite number of sets of componen...
Saved in:
Published in: | Photonics 2023-01, Vol.10 (1), p.93 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3 |
container_end_page | |
container_issue | 1 |
container_start_page | 93 |
container_title | Photonics |
container_volume | 10 |
creator | San José, Ignacio Gil, José J. |
description | The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of nondepolarizing constituents provides a general framework for parallel decompositions of polarimetric interactions. Even though arbitrary decomposition can be performed through an infinite number of sets of components, the nature of such components is subject to certain restrictions which limit the interpretation of the Mueller matrix in terms of simple configurations. In this communication, a new approach based on the addition of some portion of a perfect depolarizer before the parallel decomposition is introduced, leading to a set of three components which depend, respectively, on the first column, the first row, and the remaining 3 × 3 submatrix of the original Mueller matrix, so that those components inherit, in a decoupled manner, the polarizance vector, the diattenuation vector, and the combined complementary polarimetric information on depolarization and retardance. |
doi_str_mv | 10.3390/photonics10010093 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79e314d175bc4186ae194c697e509e69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_79e314d175bc4186ae194c697e509e69</doaj_id><sourcerecordid>2767273262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3</originalsourceid><addsrcrecordid>eNplkN1KAzEQhYMoWGofwLsFL2U1_9lcSqm20CKIXoc0meiWdbMmKejbu1oRwWFghuFwzvAhdE7wFWMaXw8vscS-dZlgPLZmR2hCGea1VIwe_9lP0SznHR5LE9YIPkGXi_cCvQdfPcCQIENfbGljX8VQbfbQdZCqjS2pdZDP0EmwXYbZz5yip9vF43xZr-_vVvObde0YoaUmXEmhQnBOcBsabqnUeMsodoJuLecBJGBPpOc0WC-8aBSTDbZcMM84s2yKVgdfH-3ODKl9tenDRNua70NMz8am0roOjNLACPdEia3jpJEWiOZOagUCa5B69Lo4eA0pvu0hF7OL-9SP7xuqpKIjFElHFTmoXIo5Jwi_qQSbL8TmH2L2CQ3Abp0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767273262</pqid></control><display><type>article</type><title>Extended Representation of Mueller Matrices</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>San José, Ignacio ; Gil, José J.</creator><creatorcontrib>San José, Ignacio ; Gil, José J.</creatorcontrib><description>The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of nondepolarizing constituents provides a general framework for parallel decompositions of polarimetric interactions. Even though arbitrary decomposition can be performed through an infinite number of sets of components, the nature of such components is subject to certain restrictions which limit the interpretation of the Mueller matrix in terms of simple configurations. In this communication, a new approach based on the addition of some portion of a perfect depolarizer before the parallel decomposition is introduced, leading to a set of three components which depend, respectively, on the first column, the first row, and the remaining 3 × 3 submatrix of the original Mueller matrix, so that those components inherit, in a decoupled manner, the polarizance vector, the diattenuation vector, and the combined complementary polarimetric information on depolarization and retardance.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics10010093</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Decomposition ; Depolarization ; diattenuation ; Light ; Matrices (mathematics) ; Matrix algebra ; Mueller matrices ; Polarimetry ; polarizance ; Retardance</subject><ispartof>Photonics, 2023-01, Vol.10 (1), p.93</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3</citedby><cites>FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3</cites><orcidid>0000-0003-1740-2244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767273262/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767273262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>San José, Ignacio</creatorcontrib><creatorcontrib>Gil, José J.</creatorcontrib><title>Extended Representation of Mueller Matrices</title><title>Photonics</title><description>The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of nondepolarizing constituents provides a general framework for parallel decompositions of polarimetric interactions. Even though arbitrary decomposition can be performed through an infinite number of sets of components, the nature of such components is subject to certain restrictions which limit the interpretation of the Mueller matrix in terms of simple configurations. In this communication, a new approach based on the addition of some portion of a perfect depolarizer before the parallel decomposition is introduced, leading to a set of three components which depend, respectively, on the first column, the first row, and the remaining 3 × 3 submatrix of the original Mueller matrix, so that those components inherit, in a decoupled manner, the polarizance vector, the diattenuation vector, and the combined complementary polarimetric information on depolarization and retardance.</description><subject>Decomposition</subject><subject>Depolarization</subject><subject>diattenuation</subject><subject>Light</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Mueller matrices</subject><subject>Polarimetry</subject><subject>polarizance</subject><subject>Retardance</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkN1KAzEQhYMoWGofwLsFL2U1_9lcSqm20CKIXoc0meiWdbMmKejbu1oRwWFghuFwzvAhdE7wFWMaXw8vscS-dZlgPLZmR2hCGea1VIwe_9lP0SznHR5LE9YIPkGXi_cCvQdfPcCQIENfbGljX8VQbfbQdZCqjS2pdZDP0EmwXYbZz5yip9vF43xZr-_vVvObde0YoaUmXEmhQnBOcBsabqnUeMsodoJuLecBJGBPpOc0WC-8aBSTDbZcMM84s2yKVgdfH-3ODKl9tenDRNua70NMz8am0roOjNLACPdEia3jpJEWiOZOagUCa5B69Lo4eA0pvu0hF7OL-9SP7xuqpKIjFElHFTmoXIo5Jwi_qQSbL8TmH2L2CQ3Abp0</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>San José, Ignacio</creator><creator>Gil, José J.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1740-2244</orcidid></search><sort><creationdate>20230101</creationdate><title>Extended Representation of Mueller Matrices</title><author>San José, Ignacio ; Gil, José J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decomposition</topic><topic>Depolarization</topic><topic>diattenuation</topic><topic>Light</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Mueller matrices</topic><topic>Polarimetry</topic><topic>polarizance</topic><topic>Retardance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San José, Ignacio</creatorcontrib><creatorcontrib>Gil, José J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San José, Ignacio</au><au>Gil, José J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Representation of Mueller Matrices</atitle><jtitle>Photonics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>93</spage><pages>93-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of nondepolarizing constituents provides a general framework for parallel decompositions of polarimetric interactions. Even though arbitrary decomposition can be performed through an infinite number of sets of components, the nature of such components is subject to certain restrictions which limit the interpretation of the Mueller matrix in terms of simple configurations. In this communication, a new approach based on the addition of some portion of a perfect depolarizer before the parallel decomposition is introduced, leading to a set of three components which depend, respectively, on the first column, the first row, and the remaining 3 × 3 submatrix of the original Mueller matrix, so that those components inherit, in a decoupled manner, the polarizance vector, the diattenuation vector, and the combined complementary polarimetric information on depolarization and retardance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics10010093</doi><orcidid>https://orcid.org/0000-0003-1740-2244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2023-01, Vol.10 (1), p.93 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_79e314d175bc4186ae194c697e509e69 |
source | Publicly Available Content (ProQuest); EZB Electronic Journals Library |
subjects | Decomposition Depolarization diattenuation Light Matrices (mathematics) Matrix algebra Mueller matrices Polarimetry polarizance Retardance |
title | Extended Representation of Mueller Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Representation%20of%20Mueller%20Matrices&rft.jtitle=Photonics&rft.au=San%20Jos%C3%A9,%20Ignacio&rft.date=2023-01-01&rft.volume=10&rft.issue=1&rft.spage=93&rft.pages=93-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics10010093&rft_dat=%3Cproquest_doaj_%3E2767273262%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-147657ffcc54af84a2690b320c52ba44fe6e0d16d42fad5d5873680a453d343a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767273262&rft_id=info:pmid/&rfr_iscdi=true |