Loading…

High energy solutions to p(x)-Laplacian equations of schrodinger type

In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations 2015-05, Vol.2015 (136), p.1-17
Main Authors: Xiaoyan Wang, Jinghua Yao, Duchao Liu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 17
container_issue 136
container_start_page 1
container_title Electronic journal of differential equations
container_volume 2015
creator Xiaoyan Wang
Jinghua Yao
Duchao Liu
description In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</doaj_id><sourcerecordid>oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123</originalsourceid><addsrcrecordid>eNotjE9LwzAYh3NQcE6_Q456KORfk-YoY7rBYBc9l7fJmy6jNjXpwH57xXn6PTwP_G7IijMjKq0tvyP3pZwZ41YJtSLbXexPFEfM_UJLGi5zTGOhc6LT0_dzdYBpABdhpPh1gWtLgRZ3ysnHscdM52XCB3IbYCj4-L9r8vG6fd_sqsPxbb95OVReCD5XQUuUTAjsuIQGreW1cw1DJpvGG103SooAyvwCBg_KByOctQ5Ae6G5kGuyv_76BOd2yvET8tImiO2fSLlvIc_RDdgai8C4qTEoq3SnreuUwabunERTKyF_AELNUuo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><source>DOAJ Directory of Open Access Journals</source><creator>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</creator><creatorcontrib>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</creatorcontrib><description>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</description><identifier>ISSN: 1072-6691</identifier><language>eng</language><publisher>Texas State University</publisher><subject>critical point ; fountain theorem, Palais-Smale condition ; p(x)-Laplacian ; variable exponent Sobolev space</subject><ispartof>Electronic journal of differential equations, 2015-05, Vol.2015 (136), p.1-17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2096</link.rule.ids></links><search><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Jinghua Yao</creatorcontrib><creatorcontrib>Duchao Liu</creatorcontrib><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><title>Electronic journal of differential equations</title><description>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</description><subject>critical point</subject><subject>fountain theorem, Palais-Smale condition</subject><subject>p(x)-Laplacian</subject><subject>variable exponent Sobolev space</subject><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjE9LwzAYh3NQcE6_Q456KORfk-YoY7rBYBc9l7fJmy6jNjXpwH57xXn6PTwP_G7IijMjKq0tvyP3pZwZ41YJtSLbXexPFEfM_UJLGi5zTGOhc6LT0_dzdYBpABdhpPh1gWtLgRZ3ysnHscdM52XCB3IbYCj4-L9r8vG6fd_sqsPxbb95OVReCD5XQUuUTAjsuIQGreW1cw1DJpvGG103SooAyvwCBg_KByOctQ5Ae6G5kGuyv_76BOd2yvET8tImiO2fSLlvIc_RDdgai8C4qTEoq3SnreuUwabunERTKyF_AELNUuo</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Xiaoyan Wang</creator><creator>Jinghua Yao</creator><creator>Duchao Liu</creator><general>Texas State University</general><scope>DOA</scope></search><sort><creationdate>20150515</creationdate><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><author>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>critical point</topic><topic>fountain theorem, Palais-Smale condition</topic><topic>p(x)-Laplacian</topic><topic>variable exponent Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Jinghua Yao</creatorcontrib><creatorcontrib>Duchao Liu</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoyan Wang</au><au>Jinghua Yao</au><au>Duchao Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy solutions to p(x)-Laplacian equations of schrodinger type</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>2015</volume><issue>136</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1072-6691</issn><abstract>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</abstract><pub>Texas State University</pub><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-6691
ispartof Electronic journal of differential equations, 2015-05, Vol.2015 (136), p.1-17
issn 1072-6691
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542
source DOAJ Directory of Open Access Journals
subjects critical point
fountain theorem, Palais-Smale condition
p(x)-Laplacian
variable exponent Sobolev space
title High energy solutions to p(x)-Laplacian equations of schrodinger type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20solutions%20to%20p(x)-Laplacian%20equations%20of%20schrodinger%20type&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Xiaoyan%20Wang&rft.date=2015-05-15&rft.volume=2015&rft.issue=136&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1072-6691&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true