Loading…
High energy solutions to p(x)-Laplacian equations of schrodinger type
In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively...
Saved in:
Published in: | Electronic journal of differential equations 2015-05, Vol.2015 (136), p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 17 |
container_issue | 136 |
container_start_page | 1 |
container_title | Electronic journal of differential equations |
container_volume | 2015 |
creator | Xiaoyan Wang Jinghua Yao Duchao Liu |
description | In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies. |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</doaj_id><sourcerecordid>oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123</originalsourceid><addsrcrecordid>eNotjE9LwzAYh3NQcE6_Q456KORfk-YoY7rBYBc9l7fJmy6jNjXpwH57xXn6PTwP_G7IijMjKq0tvyP3pZwZ41YJtSLbXexPFEfM_UJLGi5zTGOhc6LT0_dzdYBpABdhpPh1gWtLgRZ3ysnHscdM52XCB3IbYCj4-L9r8vG6fd_sqsPxbb95OVReCD5XQUuUTAjsuIQGreW1cw1DJpvGG103SooAyvwCBg_KByOctQ5Ae6G5kGuyv_76BOd2yvET8tImiO2fSLlvIc_RDdgai8C4qTEoq3SnreuUwabunERTKyF_AELNUuo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><source>DOAJ Directory of Open Access Journals</source><creator>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</creator><creatorcontrib>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</creatorcontrib><description>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</description><identifier>ISSN: 1072-6691</identifier><language>eng</language><publisher>Texas State University</publisher><subject>critical point ; fountain theorem, Palais-Smale condition ; p(x)-Laplacian ; variable exponent Sobolev space</subject><ispartof>Electronic journal of differential equations, 2015-05, Vol.2015 (136), p.1-17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2096</link.rule.ids></links><search><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Jinghua Yao</creatorcontrib><creatorcontrib>Duchao Liu</creatorcontrib><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><title>Electronic journal of differential equations</title><description>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</description><subject>critical point</subject><subject>fountain theorem, Palais-Smale condition</subject><subject>p(x)-Laplacian</subject><subject>variable exponent Sobolev space</subject><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjE9LwzAYh3NQcE6_Q456KORfk-YoY7rBYBc9l7fJmy6jNjXpwH57xXn6PTwP_G7IijMjKq0tvyP3pZwZ41YJtSLbXexPFEfM_UJLGi5zTGOhc6LT0_dzdYBpABdhpPh1gWtLgRZ3ysnHscdM52XCB3IbYCj4-L9r8vG6fd_sqsPxbb95OVReCD5XQUuUTAjsuIQGreW1cw1DJpvGG103SooAyvwCBg_KByOctQ5Ae6G5kGuyv_76BOd2yvET8tImiO2fSLlvIc_RDdgai8C4qTEoq3SnreuUwabunERTKyF_AELNUuo</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Xiaoyan Wang</creator><creator>Jinghua Yao</creator><creator>Duchao Liu</creator><general>Texas State University</general><scope>DOA</scope></search><sort><creationdate>20150515</creationdate><title>High energy solutions to p(x)-Laplacian equations of schrodinger type</title><author>Xiaoyan Wang ; Jinghua Yao ; Duchao Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>critical point</topic><topic>fountain theorem, Palais-Smale condition</topic><topic>p(x)-Laplacian</topic><topic>variable exponent Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Jinghua Yao</creatorcontrib><creatorcontrib>Duchao Liu</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoyan Wang</au><au>Jinghua Yao</au><au>Duchao Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy solutions to p(x)-Laplacian equations of schrodinger type</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>2015</volume><issue>136</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1072-6691</issn><abstract>In this article, we study nonlinear Schrodinger type equations in R^N under the framework of variable exponent spaces. We proposed new assumptions on the nonlinear term to yield bounded Palais-Smale sequences and then prove that the special sequences we found converge to critical points respectively. The main arguments are based on the geometry supplied by Fountain Theorem. Consequently, we showed that the equation under investigation admits a sequence of weak solutions with high energies.</abstract><pub>Texas State University</pub><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-6691 |
ispartof | Electronic journal of differential equations, 2015-05, Vol.2015 (136), p.1-17 |
issn | 1072-6691 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542 |
source | DOAJ Directory of Open Access Journals |
subjects | critical point fountain theorem, Palais-Smale condition p(x)-Laplacian variable exponent Sobolev space |
title | High energy solutions to p(x)-Laplacian equations of schrodinger type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20solutions%20to%20p(x)-Laplacian%20equations%20of%20schrodinger%20type&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Xiaoyan%20Wang&rft.date=2015-05-15&rft.volume=2015&rft.issue=136&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1072-6691&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_79ea0175ef4946b69cb47e85bc3e7542%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-f63e3022eb13a8e9915cc80e0388d7658432fa47584efda4df72c99caa6d26123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |