Loading…

In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast

Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent u...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2019-09, Vol.28 (11), p.2777-2783.e4
Main Authors: Mukherjee, Progya P., Labib, Karim P.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3
cites cdi_FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3
container_end_page 2783.e4
container_issue 11
container_start_page 2777
container_title Cell reports (Cambridge)
container_volume 28
creator Mukherjee, Progya P.
Labib, Karim P.M.
description Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCFDia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4. [Display omitted] •In vitro ubiquitylation of budding yeast replisome by SCFDia2•SCFDia2 ubiquitylates the CMG helicase without priming by HECT or RBR ligases•In vitro reconstitution of the disassembly of ubiquitylated CMG•Budding yeast Cdc48-Ufd1-Npl4 are sufficient to disassemble ubiquitylated CMG To study the mechanism of CMG helicase disassembly during DNA replication termination, Mukherjee and Labib purify a complex of the yeast replisome with the E3 ligase SCFDia2. After in vitro ubiquitylation of the Mcm7 subunit of CMG, recombinant Cdc48 with its adaptors Ufd1-Npl4 are sufficient to drive efficient CMG disassembly.
doi_str_mv 10.1016/j.celrep.2019.08.026
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_79fe2125934f41b0843149ea5db864c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124719310605</els_id><doaj_id>oai_doaj_org_article_79fe2125934f41b0843149ea5db864c7</doaj_id><sourcerecordid>2289577024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3</originalsourceid><addsrcrecordid>eNp9UsFu1DAQjRCIVqV_gJCPXBJsx0nsCxLslnalVkgIkDhZjj3eepW1t7ZTqRe-hW_hy3C7pbQXfBlr_OaN38yrqtcENwST_t2m0TBF2DUUE9Fg3mDaP6sOKSWkJpQNzx_dD6rjlDa4nB4TItjL6qAlHRYDI4fVz5X__eu7yzGgL6CDT9nlObvg0RKs85BQvgR04bzbqqlArmYXYQs-J2RDRAujGa-XsANvShItXVIpwXacblCwd7WLi1N0BpPTKgFyHn2cjXF-jX6ASvlV9cKqKcHxfTyqvn06-bo4q88_n64WH85r3Yku18B61Y8aU21tiaxTmlMrqFZjC8oOgg4Ct2wUMBYUgLHQtoPh2ghMOej2qFrteU1QG7mLRU28kUE5eZcIcS1VzE5PIAdhgRLaiZZZRkbMWUuYANWZkfdMD4Xr_Z5rN49bMLrojmp6Qvr0xbtLuQ7XsudCdIQXgrf3BDFczZCy3LpU9jkpD2FOklIuumHAlBUo20N1DClFsA9tCJa3TpAbuXeCvHWCxFwWJ5SyN4-_-FD0d-__NEAZ-rWDKJN24DWYsl6dy1Tc_zv8AWJqyac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289577024</pqid></control><display><type>article</type><title>In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Mukherjee, Progya P. ; Labib, Karim P.M.</creator><creatorcontrib>Mukherjee, Progya P. ; Labib, Karim P.M.</creatorcontrib><description>Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCFDia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4. [Display omitted] •In vitro ubiquitylation of budding yeast replisome by SCFDia2•SCFDia2 ubiquitylates the CMG helicase without priming by HECT or RBR ligases•In vitro reconstitution of the disassembly of ubiquitylated CMG•Budding yeast Cdc48-Ufd1-Npl4 are sufficient to disassemble ubiquitylated CMG To study the mechanism of CMG helicase disassembly during DNA replication termination, Mukherjee and Labib purify a complex of the yeast replisome with the E3 ligase SCFDia2. After in vitro ubiquitylation of the Mcm7 subunit of CMG, recombinant Cdc48 with its adaptors Ufd1-Npl4 are sufficient to drive efficient CMG disassembly.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2019.08.026</identifier><identifier>PMID: 31509741</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ATPase ; Cdc48 ; CMG helicase ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA replication ; DNA Replication - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; F-Box Proteins - metabolism ; In Vitro Techniques ; Mcm7 ; Minichromosome Maintenance Complex Component 7 - genetics ; Minichromosome Maintenance Complex Component 7 - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleocytoplasmic Transport Proteins - genetics ; Nucleocytoplasmic Transport Proteins - metabolism ; p97 ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; SCFDia2 ; Ubiquitination - genetics ; ubiquitylation ; Ufd1-Npl4 ; Valosin Containing Protein - genetics ; Valosin Containing Protein - metabolism ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism</subject><ispartof>Cell reports (Cambridge), 2019-09, Vol.28 (11), p.2777-2783.e4</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3</citedby><cites>FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31509741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Progya P.</creatorcontrib><creatorcontrib>Labib, Karim P.M.</creatorcontrib><title>In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCFDia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4. [Display omitted] •In vitro ubiquitylation of budding yeast replisome by SCFDia2•SCFDia2 ubiquitylates the CMG helicase without priming by HECT or RBR ligases•In vitro reconstitution of the disassembly of ubiquitylated CMG•Budding yeast Cdc48-Ufd1-Npl4 are sufficient to disassemble ubiquitylated CMG To study the mechanism of CMG helicase disassembly during DNA replication termination, Mukherjee and Labib purify a complex of the yeast replisome with the E3 ligase SCFDia2. After in vitro ubiquitylation of the Mcm7 subunit of CMG, recombinant Cdc48 with its adaptors Ufd1-Npl4 are sufficient to drive efficient CMG disassembly.</description><subject>ATPase</subject><subject>Cdc48</subject><subject>CMG helicase</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>F-Box Proteins - metabolism</subject><subject>In Vitro Techniques</subject><subject>Mcm7</subject><subject>Minichromosome Maintenance Complex Component 7 - genetics</subject><subject>Minichromosome Maintenance Complex Component 7 - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleocytoplasmic Transport Proteins - genetics</subject><subject>Nucleocytoplasmic Transport Proteins - metabolism</subject><subject>p97</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>SCFDia2</subject><subject>Ubiquitination - genetics</subject><subject>ubiquitylation</subject><subject>Ufd1-Npl4</subject><subject>Valosin Containing Protein - genetics</subject><subject>Valosin Containing Protein - metabolism</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UsFu1DAQjRCIVqV_gJCPXBJsx0nsCxLslnalVkgIkDhZjj3eepW1t7ZTqRe-hW_hy3C7pbQXfBlr_OaN38yrqtcENwST_t2m0TBF2DUUE9Fg3mDaP6sOKSWkJpQNzx_dD6rjlDa4nB4TItjL6qAlHRYDI4fVz5X__eu7yzGgL6CDT9nlObvg0RKs85BQvgR04bzbqqlArmYXYQs-J2RDRAujGa-XsANvShItXVIpwXacblCwd7WLi1N0BpPTKgFyHn2cjXF-jX6ASvlV9cKqKcHxfTyqvn06-bo4q88_n64WH85r3Yku18B61Y8aU21tiaxTmlMrqFZjC8oOgg4Ct2wUMBYUgLHQtoPh2ghMOej2qFrteU1QG7mLRU28kUE5eZcIcS1VzE5PIAdhgRLaiZZZRkbMWUuYANWZkfdMD4Xr_Z5rN49bMLrojmp6Qvr0xbtLuQ7XsudCdIQXgrf3BDFczZCy3LpU9jkpD2FOklIuumHAlBUo20N1DClFsA9tCJa3TpAbuXeCvHWCxFwWJ5SyN4-_-FD0d-__NEAZ-rWDKJN24DWYsl6dy1Tc_zv8AWJqyac</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Mukherjee, Progya P.</creator><creator>Labib, Karim P.M.</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190910</creationdate><title>In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast</title><author>Mukherjee, Progya P. ; Labib, Karim P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ATPase</topic><topic>Cdc48</topic><topic>CMG helicase</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>F-Box Proteins - metabolism</topic><topic>In Vitro Techniques</topic><topic>Mcm7</topic><topic>Minichromosome Maintenance Complex Component 7 - genetics</topic><topic>Minichromosome Maintenance Complex Component 7 - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleocytoplasmic Transport Proteins - genetics</topic><topic>Nucleocytoplasmic Transport Proteins - metabolism</topic><topic>p97</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>SCFDia2</topic><topic>Ubiquitination - genetics</topic><topic>ubiquitylation</topic><topic>Ufd1-Npl4</topic><topic>Valosin Containing Protein - genetics</topic><topic>Valosin Containing Protein - metabolism</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Progya P.</creatorcontrib><creatorcontrib>Labib, Karim P.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Progya P.</au><au>Labib, Karim P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>28</volume><issue>11</issue><spage>2777</spage><epage>2783.e4</epage><pages>2777-2783.e4</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCFDia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4. [Display omitted] •In vitro ubiquitylation of budding yeast replisome by SCFDia2•SCFDia2 ubiquitylates the CMG helicase without priming by HECT or RBR ligases•In vitro reconstitution of the disassembly of ubiquitylated CMG•Budding yeast Cdc48-Ufd1-Npl4 are sufficient to disassemble ubiquitylated CMG To study the mechanism of CMG helicase disassembly during DNA replication termination, Mukherjee and Labib purify a complex of the yeast replisome with the E3 ligase SCFDia2. After in vitro ubiquitylation of the Mcm7 subunit of CMG, recombinant Cdc48 with its adaptors Ufd1-Npl4 are sufficient to drive efficient CMG disassembly.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31509741</pmid><doi>10.1016/j.celrep.2019.08.026</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2019-09, Vol.28 (11), p.2777-2783.e4
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_79fe2125934f41b0843149ea5db864c7
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects ATPase
Cdc48
CMG helicase
DNA Helicases - genetics
DNA Helicases - metabolism
DNA replication
DNA Replication - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
F-Box Proteins - metabolism
In Vitro Techniques
Mcm7
Minichromosome Maintenance Complex Component 7 - genetics
Minichromosome Maintenance Complex Component 7 - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleocytoplasmic Transport Proteins - genetics
Nucleocytoplasmic Transport Proteins - metabolism
p97
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
SCFDia2
Ubiquitination - genetics
ubiquitylation
Ufd1-Npl4
Valosin Containing Protein - genetics
Valosin Containing Protein - metabolism
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
title In Vitro Reconstitution Defines the Minimal Requirements for Cdc48-Dependent Disassembly of the CMG Helicase in Budding Yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T22%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0Vitro%20Reconstitution%20Defines%20the%20Minimal%20Requirements%20for%20Cdc48-Dependent%20Disassembly%20of%20the%20CMG%20Helicase%20in%20Budding%20Yeast&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Mukherjee,%20Progya%20P.&rft.date=2019-09-10&rft.volume=28&rft.issue=11&rft.spage=2777&rft.epage=2783.e4&rft.pages=2777-2783.e4&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2019.08.026&rft_dat=%3Cproquest_doaj_%3E2289577024%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c595t-e46a6bc02cff6bc45ac82f92cab3eaf79279034b9ebbc0eedfe337d8cd9028ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289577024&rft_id=info:pmid/31509741&rfr_iscdi=true