Loading…

Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation

The scientific community has recently shown a lot of interest in biometric-based person recognition systems. It is a dynamic technology that tries to recognize biometrics automatically, swiftly, precisely, and consistently. Gait recognition is a sort of biometric classification that concentrates on...

Full description

Saved in:
Bibliographic Details
Published in:Measurement. Sensors 2023-02, Vol.25, p.100544, Article 100544
Main Authors: Naji Hussain, Ayat, Abboud, Sahar Adil, Jumaa, Basim Abdul baki, Abdullah, Mohammed Najm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2824-4fe08e98f8d59c965c8f99a0546252117537cf394397601ec1918eeb994aaf073
container_end_page
container_issue
container_start_page 100544
container_title Measurement. Sensors
container_volume 25
creator Naji Hussain, Ayat
Abboud, Sahar Adil
Jumaa, Basim Abdul baki
Abdullah, Mohammed Najm
description The scientific community has recently shown a lot of interest in biometric-based person recognition systems. It is a dynamic technology that tries to recognize biometrics automatically, swiftly, precisely, and consistently. Gait recognition is a sort of biometric classification that concentrates on identifying persons utilizing personal measurements and correlations, including trunk and limb size, in addition to spatial data connected to innate patterns in people's motions. The purpose of this study is to highlight how important it is to use feature reduction strategies to increase classification accuracy. Two of these approaches are employed in this work: Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). To classify foot disease, six machine learning techniques are deployed as classifiers. These classifiers are Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree (DT), and Stochastic Gradient Descent (SGD) for the purpose of determining which classifier performs best in classifying leg rehabilitation data. Experimental results using the EMG dataset in Lower Limb indicate that the classification accuracy reached 99% with a time not exceeding a few seconds.
doi_str_mv 10.1016/j.measen.2022.100544
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7a3b909e55944c9f9ac58c5531a3ffb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2665917422001787</els_id><doaj_id>oai_doaj_org_article_7a3b909e55944c9f9ac58c5531a3ffb0</doaj_id><sourcerecordid>S2665917422001787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2824-4fe08e98f8d59c965c8f99a0546252117537cf394397601ec1918eeb994aaf073</originalsourceid><addsrcrecordid>eNp9kctqwzAQRU1poaHNH3ThH0gqyZJtbQol9BEIdNOuxXg8SmQcO5WcQP6-SlxKVl1JuuIcZrhJ8sDZnDOePzbzLUGgbi6YEDFiSsqrZCLyXM00L-T1xf02mYbQMMZEGVkhJ8lhud0BDmlvU0sw7D2lnuo9Dq7v0oFw07nvPYU0vrCFEJx1COdPQNx7wOMJ3QJuXEdpS-A7160vSdfFeB2tG6hc64YzfZ_cWGgDTX_Pu-Tr9eVz8T5bfbwtF8-rGYpSyJm0xErSpS1rpVHnCkurNcQVc6EE54XKCrSZlpkucsYJueYlUaW1BLCsyO6S5eite2jMzrst-KPpwZlz0Pu1AT84bMkUkFWaaVJKS4naakBVolIZh8zaikWXHF3o-xA82T8fZ-ZUhWnMWIU5VWHGKiL2NGIU9zw48iagow6pdp5wiIO4_wU_eCOVCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation</title><source>ScienceDirect Journals</source><creator>Naji Hussain, Ayat ; Abboud, Sahar Adil ; Jumaa, Basim Abdul baki ; Abdullah, Mohammed Najm</creator><creatorcontrib>Naji Hussain, Ayat ; Abboud, Sahar Adil ; Jumaa, Basim Abdul baki ; Abdullah, Mohammed Najm</creatorcontrib><description>The scientific community has recently shown a lot of interest in biometric-based person recognition systems. It is a dynamic technology that tries to recognize biometrics automatically, swiftly, precisely, and consistently. Gait recognition is a sort of biometric classification that concentrates on identifying persons utilizing personal measurements and correlations, including trunk and limb size, in addition to spatial data connected to innate patterns in people's motions. The purpose of this study is to highlight how important it is to use feature reduction strategies to increase classification accuracy. Two of these approaches are employed in this work: Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). To classify foot disease, six machine learning techniques are deployed as classifiers. These classifiers are Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree (DT), and Stochastic Gradient Descent (SGD) for the purpose of determining which classifier performs best in classifying leg rehabilitation data. Experimental results using the EMG dataset in Lower Limb indicate that the classification accuracy reached 99% with a time not exceeding a few seconds.</description><identifier>ISSN: 2665-9174</identifier><identifier>EISSN: 2665-9174</identifier><identifier>DOI: 10.1016/j.measen.2022.100544</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classification ; Gait recognition ; Machin learning (ML) ; Principal Component Analysis (PCA) ; Singular Value Decomposition (SVD)</subject><ispartof>Measurement. Sensors, 2023-02, Vol.25, p.100544, Article 100544</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2824-4fe08e98f8d59c965c8f99a0546252117537cf394397601ec1918eeb994aaf073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2665917422001787$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Naji Hussain, Ayat</creatorcontrib><creatorcontrib>Abboud, Sahar Adil</creatorcontrib><creatorcontrib>Jumaa, Basim Abdul baki</creatorcontrib><creatorcontrib>Abdullah, Mohammed Najm</creatorcontrib><title>Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation</title><title>Measurement. Sensors</title><description>The scientific community has recently shown a lot of interest in biometric-based person recognition systems. It is a dynamic technology that tries to recognize biometrics automatically, swiftly, precisely, and consistently. Gait recognition is a sort of biometric classification that concentrates on identifying persons utilizing personal measurements and correlations, including trunk and limb size, in addition to spatial data connected to innate patterns in people's motions. The purpose of this study is to highlight how important it is to use feature reduction strategies to increase classification accuracy. Two of these approaches are employed in this work: Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). To classify foot disease, six machine learning techniques are deployed as classifiers. These classifiers are Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree (DT), and Stochastic Gradient Descent (SGD) for the purpose of determining which classifier performs best in classifying leg rehabilitation data. Experimental results using the EMG dataset in Lower Limb indicate that the classification accuracy reached 99% with a time not exceeding a few seconds.</description><subject>Classification</subject><subject>Gait recognition</subject><subject>Machin learning (ML)</subject><subject>Principal Component Analysis (PCA)</subject><subject>Singular Value Decomposition (SVD)</subject><issn>2665-9174</issn><issn>2665-9174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctqwzAQRU1poaHNH3ThH0gqyZJtbQol9BEIdNOuxXg8SmQcO5WcQP6-SlxKVl1JuuIcZrhJ8sDZnDOePzbzLUGgbi6YEDFiSsqrZCLyXM00L-T1xf02mYbQMMZEGVkhJ8lhud0BDmlvU0sw7D2lnuo9Dq7v0oFw07nvPYU0vrCFEJx1COdPQNx7wOMJ3QJuXEdpS-A7160vSdfFeB2tG6hc64YzfZ_cWGgDTX_Pu-Tr9eVz8T5bfbwtF8-rGYpSyJm0xErSpS1rpVHnCkurNcQVc6EE54XKCrSZlpkucsYJueYlUaW1BLCsyO6S5eite2jMzrst-KPpwZlz0Pu1AT84bMkUkFWaaVJKS4naakBVolIZh8zaikWXHF3o-xA82T8fZ-ZUhWnMWIU5VWHGKiL2NGIU9zw48iagow6pdp5wiIO4_wU_eCOVCw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Naji Hussain, Ayat</creator><creator>Abboud, Sahar Adil</creator><creator>Jumaa, Basim Abdul baki</creator><creator>Abdullah, Mohammed Najm</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202302</creationdate><title>Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation</title><author>Naji Hussain, Ayat ; Abboud, Sahar Adil ; Jumaa, Basim Abdul baki ; Abdullah, Mohammed Najm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2824-4fe08e98f8d59c965c8f99a0546252117537cf394397601ec1918eeb994aaf073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Gait recognition</topic><topic>Machin learning (ML)</topic><topic>Principal Component Analysis (PCA)</topic><topic>Singular Value Decomposition (SVD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naji Hussain, Ayat</creatorcontrib><creatorcontrib>Abboud, Sahar Adil</creatorcontrib><creatorcontrib>Jumaa, Basim Abdul baki</creatorcontrib><creatorcontrib>Abdullah, Mohammed Najm</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Measurement. Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naji Hussain, Ayat</au><au>Abboud, Sahar Adil</au><au>Jumaa, Basim Abdul baki</au><au>Abdullah, Mohammed Najm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation</atitle><jtitle>Measurement. Sensors</jtitle><date>2023-02</date><risdate>2023</risdate><volume>25</volume><spage>100544</spage><pages>100544-</pages><artnum>100544</artnum><issn>2665-9174</issn><eissn>2665-9174</eissn><abstract>The scientific community has recently shown a lot of interest in biometric-based person recognition systems. It is a dynamic technology that tries to recognize biometrics automatically, swiftly, precisely, and consistently. Gait recognition is a sort of biometric classification that concentrates on identifying persons utilizing personal measurements and correlations, including trunk and limb size, in addition to spatial data connected to innate patterns in people's motions. The purpose of this study is to highlight how important it is to use feature reduction strategies to increase classification accuracy. Two of these approaches are employed in this work: Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). To classify foot disease, six machine learning techniques are deployed as classifiers. These classifiers are Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree (DT), and Stochastic Gradient Descent (SGD) for the purpose of determining which classifier performs best in classifying leg rehabilitation data. Experimental results using the EMG dataset in Lower Limb indicate that the classification accuracy reached 99% with a time not exceeding a few seconds.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measen.2022.100544</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2665-9174
ispartof Measurement. Sensors, 2023-02, Vol.25, p.100544, Article 100544
issn 2665-9174
2665-9174
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7a3b909e55944c9f9ac58c5531a3ffb0
source ScienceDirect Journals
subjects Classification
Gait recognition
Machin learning (ML)
Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)
title Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20feature%20reduction%20techniques%20on%20classification%20accuracy%20of%20machine%20learning%20techniques%20in%20leg%20rehabilitation&rft.jtitle=Measurement.%20Sensors&rft.au=Naji%20Hussain,%20Ayat&rft.date=2023-02&rft.volume=25&rft.spage=100544&rft.pages=100544-&rft.artnum=100544&rft.issn=2665-9174&rft.eissn=2665-9174&rft_id=info:doi/10.1016/j.measen.2022.100544&rft_dat=%3Celsevier_doaj_%3ES2665917422001787%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2824-4fe08e98f8d59c965c8f99a0546252117537cf394397601ec1918eeb994aaf073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true