Loading…
Complexity‐reduced maximum‐likelihood hybrid detection for MIMO systems
For wireless communications, the multiple‐input multiple‐output (MIMO) system efficiently makes use of the spectrum and enhances the transmission throughput. In this work, the maximum‐likelihood (ML) detection for the MIMO system is studied, and two ML detection algorithms are first considered for t...
Saved in:
Published in: | IET communications 2023-04, Vol.17 (7), p.829-841 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For wireless communications, the multiple‐input multiple‐output (MIMO) system efficiently makes use of the spectrum and enhances the transmission throughput. In this work, the maximum‐likelihood (ML) detection for the MIMO system is studied, and two ML detection algorithms are first considered for the MIMO system, including the sphere decoding (SD) algorithm and an algorithm based on differential metrics (DMs). Each of the two algorithms has its advantages and disadvantages. The two algorithms are first modified such that they are based on the same signal model. Then, a new ML detection algorithm is proposed for the MIMO system based on the hybrid operation of the two modified algorithms on the tree search process, in which both the branch‐and‐bound principle and indicative functions are applied to remove unnecessary searches. The proposed algorithm can attain the ML detection with lower average complexity over low and high ranges of signal‐to‐noise ratio (SNR), as the authors verify by simulations. The proposed ML detection can also generate soft output, and anti‐phase sequences are exploited to further reduce the complexity.
A maximum likelihood (ML) detection algorithm for the MIMO system based on the hybrid operation of two ML algorithms is proposed. The proposed algorithm can achieve ML detection with reduced average complexity. |
---|---|
ISSN: | 1751-8628 1751-8636 |
DOI: | 10.1049/cmu2.12586 |