Loading…

Potential of fecal microbiota for early‐stage detection of colorectal cancer

Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC‐associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that dis...

Full description

Saved in:
Bibliographic Details
Published in:Molecular systems biology 2014-11, Vol.10 (11), p.766-n/a
Main Authors: Zeller, Georg, Tap, Julien, Voigt, Anita Y, Sunagawa, Shinichi, Kultima, Jens Roat, Costea, Paul I, Amiot, Aurélien, Böhm, Jürgen, Brunetti, Francesco, Habermann, Nina, Hercog, Rajna, Koch, Moritz, Luciani, Alain, Mende, Daniel R, Schneider, Martin A, Schrotz‐King, Petra, Tournigand, Christophe, Tran Van Nhieu, Jeanne, Yamada, Takuji, Zimmermann, Jürgen, Benes, Vladimir, Kloor, Matthias, Ulrich, Cornelia M, von Knebel Doeberitz, Magnus, Sobhani, Iradj, Bork, Peer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673
cites cdi_FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673
container_end_page n/a
container_issue 11
container_start_page 766
container_title Molecular systems biology
container_volume 10
creator Zeller, Georg
Tap, Julien
Voigt, Anita Y
Sunagawa, Shinichi
Kultima, Jens Roat
Costea, Paul I
Amiot, Aurélien
Böhm, Jürgen
Brunetti, Francesco
Habermann, Nina
Hercog, Rajna
Koch, Moritz
Luciani, Alain
Mende, Daniel R
Schneider, Martin A
Schrotz‐King, Petra
Tournigand, Christophe
Tran Van Nhieu, Jeanne
Yamada, Takuji
Zimmermann, Jürgen
Benes, Vladimir
Kloor, Matthias
Ulrich, Cornelia M
von Knebel Doeberitz, Magnus
Sobhani, Iradj
Bork, Peer
description Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC‐associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor‐free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early‐ and late‐stage cancer and could be validated in independent patient and control populations ( N  = 335) from different countries. CRC‐associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor‐related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism. Synopsis Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically. A classification model based on gut microbial marker species distinguishes CRC patients from controls with similar accuracy as the fecal occult blood test (FOBT), routinely used for clinical screening. Combining metagenomic data with the FOBT leads to a relative improvement in sensitivity of > 45% over the FOBT alone at identical specificity. Detection accuracy of the metagenomic test is maintained in an independent study population and is still high for alternative microbiome readouts, such as the abundance of 16S rRNA OTUs or families of functionally related genes. Functional metagenomic analysis indicates an increased potential of CRC‐associated microbiota for degradation of host glycans and amino acids and for pro‐inflammatory lipopolysaccharide metabolism. Graphical Abstract Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. T
doi_str_mv 10.15252/msb.20145645
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7a655535a8c4478489a0a22b61348cf4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7a655535a8c4478489a0a22b61348cf4</doaj_id><sourcerecordid>2290149798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw5IoicYFDlvjbviCVCmil5UMCztbEmWy9ysatnS3aGz-B38gvwdu0S1shxCmO88yT0cxbFE9JPSOCCvpqlZoZrQkXkot7xT5RnFecGnr_xnmveJTSsq6ZJpo-LPao4IwqpfaLj5_DiMPooS9DV3bo8mHlXQyNDyOUXYglQuw3v378TCMssGxxRDf6MGx5F_oQ82sucjA4jI-LBx30CZ9cPQ-Kb-_efj06ruaf3p8cHc4rp6gUFZdMtgpaIiUy13YcjaqRYtsaZKZ2rKVouCYtdyC4po00oEHrmjcciFTsoDiZvG2ApT2LfgVxYwN4e3kR4sJCHL3r0SqQQggmQDvOlebaQA00Kwnj2nU8u15PrrN1s8LW5XFE6G9Jb38Z_KldhAubJ2tkLbPg5SQ4vVN2fDi327s897wdpi5IZl9c_SyG8zWm0a58ctj3MGBYJ0uk4UYprdl_oNQILSjZos_voMuwjkPegKXU5HAYZXSmqonK600pYrdrltT2Mkw2h8lehynzz24OZkdfpycDfAK--x43_7bZD1_e7LyzqSzlimGB8U-3f2_kN8mK4p0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290149798</pqid></control><display><type>article</type><title>Potential of fecal microbiota for early‐stage detection of colorectal cancer</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zeller, Georg ; Tap, Julien ; Voigt, Anita Y ; Sunagawa, Shinichi ; Kultima, Jens Roat ; Costea, Paul I ; Amiot, Aurélien ; Böhm, Jürgen ; Brunetti, Francesco ; Habermann, Nina ; Hercog, Rajna ; Koch, Moritz ; Luciani, Alain ; Mende, Daniel R ; Schneider, Martin A ; Schrotz‐King, Petra ; Tournigand, Christophe ; Tran Van Nhieu, Jeanne ; Yamada, Takuji ; Zimmermann, Jürgen ; Benes, Vladimir ; Kloor, Matthias ; Ulrich, Cornelia M ; von Knebel Doeberitz, Magnus ; Sobhani, Iradj ; Bork, Peer</creator><creatorcontrib>Zeller, Georg ; Tap, Julien ; Voigt, Anita Y ; Sunagawa, Shinichi ; Kultima, Jens Roat ; Costea, Paul I ; Amiot, Aurélien ; Böhm, Jürgen ; Brunetti, Francesco ; Habermann, Nina ; Hercog, Rajna ; Koch, Moritz ; Luciani, Alain ; Mende, Daniel R ; Schneider, Martin A ; Schrotz‐King, Petra ; Tournigand, Christophe ; Tran Van Nhieu, Jeanne ; Yamada, Takuji ; Zimmermann, Jürgen ; Benes, Vladimir ; Kloor, Matthias ; Ulrich, Cornelia M ; von Knebel Doeberitz, Magnus ; Sobhani, Iradj ; Bork, Peer</creatorcontrib><description>Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC‐associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor‐free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved &gt; 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early‐ and late‐stage cancer and could be validated in independent patient and control populations ( N  = 335) from different countries. CRC‐associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor‐related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism. Synopsis Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically. A classification model based on gut microbial marker species distinguishes CRC patients from controls with similar accuracy as the fecal occult blood test (FOBT), routinely used for clinical screening. Combining metagenomic data with the FOBT leads to a relative improvement in sensitivity of &gt; 45% over the FOBT alone at identical specificity. Detection accuracy of the metagenomic test is maintained in an independent study population and is still high for alternative microbiome readouts, such as the abundance of 16S rRNA OTUs or families of functionally related genes. Functional metagenomic analysis indicates an increased potential of CRC‐associated microbiota for degradation of host glycans and amino acids and for pro‐inflammatory lipopolysaccharide metabolism. Graphical Abstract Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.20145645</identifier><identifier>PMID: 25432777</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Amino acids ; Biodegradation ; Cancer ; Cancer screening ; Carbohydrates ; Case-Control Studies ; Colonoscopy ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - diagnosis ; Colorectal Neoplasms - microbiology ; Community composition ; Datasets ; Digestive system ; DNA damage ; Early Detection of Cancer - methods ; EMBO03 ; EMBO42 ; fecal biomarkers ; Fecal microflora ; Feces ; Feces - microbiology ; Gene pool ; Genomes ; human gut microbiome ; Humans ; Life Sciences ; Lipopolysaccharides ; metagenomics ; Metagenomics - methods ; Microbiology and Parasitology ; Microbiomes ; Microbiota ; Microorganisms ; Molecular Typing ; Occult Blood ; Patients ; Population studies ; Sensitivity and Specificity ; Studies ; Tumors</subject><ispartof>Molecular systems biology, 2014-11, Vol.10 (11), p.766-n/a</ispartof><rights>The Author(s) 2014</rights><rights>2014 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2014 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2014 The Authors. Published under the terms of the CC BY 4.0 license 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673</citedby><cites>FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673</cites><orcidid>0000-0001-8998-5413 ; 0000-0003-0331-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299606/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290149798?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25432777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03856437$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeller, Georg</creatorcontrib><creatorcontrib>Tap, Julien</creatorcontrib><creatorcontrib>Voigt, Anita Y</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Kultima, Jens Roat</creatorcontrib><creatorcontrib>Costea, Paul I</creatorcontrib><creatorcontrib>Amiot, Aurélien</creatorcontrib><creatorcontrib>Böhm, Jürgen</creatorcontrib><creatorcontrib>Brunetti, Francesco</creatorcontrib><creatorcontrib>Habermann, Nina</creatorcontrib><creatorcontrib>Hercog, Rajna</creatorcontrib><creatorcontrib>Koch, Moritz</creatorcontrib><creatorcontrib>Luciani, Alain</creatorcontrib><creatorcontrib>Mende, Daniel R</creatorcontrib><creatorcontrib>Schneider, Martin A</creatorcontrib><creatorcontrib>Schrotz‐King, Petra</creatorcontrib><creatorcontrib>Tournigand, Christophe</creatorcontrib><creatorcontrib>Tran Van Nhieu, Jeanne</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Zimmermann, Jürgen</creatorcontrib><creatorcontrib>Benes, Vladimir</creatorcontrib><creatorcontrib>Kloor, Matthias</creatorcontrib><creatorcontrib>Ulrich, Cornelia M</creatorcontrib><creatorcontrib>von Knebel Doeberitz, Magnus</creatorcontrib><creatorcontrib>Sobhani, Iradj</creatorcontrib><creatorcontrib>Bork, Peer</creatorcontrib><title>Potential of fecal microbiota for early‐stage detection of colorectal cancer</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><addtitle>Mol Syst Biol</addtitle><description>Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC‐associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor‐free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved &gt; 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early‐ and late‐stage cancer and could be validated in independent patient and control populations ( N  = 335) from different countries. CRC‐associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor‐related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism. Synopsis Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically. A classification model based on gut microbial marker species distinguishes CRC patients from controls with similar accuracy as the fecal occult blood test (FOBT), routinely used for clinical screening. Combining metagenomic data with the FOBT leads to a relative improvement in sensitivity of &gt; 45% over the FOBT alone at identical specificity. Detection accuracy of the metagenomic test is maintained in an independent study population and is still high for alternative microbiome readouts, such as the abundance of 16S rRNA OTUs or families of functionally related genes. Functional metagenomic analysis indicates an increased potential of CRC‐associated microbiota for degradation of host glycans and amino acids and for pro‐inflammatory lipopolysaccharide metabolism. Graphical Abstract Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically.</description><subject>Amino acids</subject><subject>Biodegradation</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Carbohydrates</subject><subject>Case-Control Studies</subject><subject>Colonoscopy</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Colorectal Neoplasms - microbiology</subject><subject>Community composition</subject><subject>Datasets</subject><subject>Digestive system</subject><subject>DNA damage</subject><subject>Early Detection of Cancer - methods</subject><subject>EMBO03</subject><subject>EMBO42</subject><subject>fecal biomarkers</subject><subject>Fecal microflora</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Gene pool</subject><subject>Genomes</subject><subject>human gut microbiome</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides</subject><subject>metagenomics</subject><subject>Metagenomics - methods</subject><subject>Microbiology and Parasitology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Molecular Typing</subject><subject>Occult Blood</subject><subject>Patients</subject><subject>Population studies</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Tumors</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw5IoicYFDlvjbviCVCmil5UMCztbEmWy9ysatnS3aGz-B38gvwdu0S1shxCmO88yT0cxbFE9JPSOCCvpqlZoZrQkXkot7xT5RnFecGnr_xnmveJTSsq6ZJpo-LPao4IwqpfaLj5_DiMPooS9DV3bo8mHlXQyNDyOUXYglQuw3v378TCMssGxxRDf6MGx5F_oQ82sucjA4jI-LBx30CZ9cPQ-Kb-_efj06ruaf3p8cHc4rp6gUFZdMtgpaIiUy13YcjaqRYtsaZKZ2rKVouCYtdyC4po00oEHrmjcciFTsoDiZvG2ApT2LfgVxYwN4e3kR4sJCHL3r0SqQQggmQDvOlebaQA00Kwnj2nU8u15PrrN1s8LW5XFE6G9Jb38Z_KldhAubJ2tkLbPg5SQ4vVN2fDi327s897wdpi5IZl9c_SyG8zWm0a58ctj3MGBYJ0uk4UYprdl_oNQILSjZos_voMuwjkPegKXU5HAYZXSmqonK600pYrdrltT2Mkw2h8lehynzz24OZkdfpycDfAK--x43_7bZD1_e7LyzqSzlimGB8U-3f2_kN8mK4p0</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zeller, Georg</creator><creator>Tap, Julien</creator><creator>Voigt, Anita Y</creator><creator>Sunagawa, Shinichi</creator><creator>Kultima, Jens Roat</creator><creator>Costea, Paul I</creator><creator>Amiot, Aurélien</creator><creator>Böhm, Jürgen</creator><creator>Brunetti, Francesco</creator><creator>Habermann, Nina</creator><creator>Hercog, Rajna</creator><creator>Koch, Moritz</creator><creator>Luciani, Alain</creator><creator>Mende, Daniel R</creator><creator>Schneider, Martin A</creator><creator>Schrotz‐King, Petra</creator><creator>Tournigand, Christophe</creator><creator>Tran Van Nhieu, Jeanne</creator><creator>Yamada, Takuji</creator><creator>Zimmermann, Jürgen</creator><creator>Benes, Vladimir</creator><creator>Kloor, Matthias</creator><creator>Ulrich, Cornelia M</creator><creator>von Knebel Doeberitz, Magnus</creator><creator>Sobhani, Iradj</creator><creator>Bork, Peer</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>Blackwell Publishing Ltd</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8998-5413</orcidid><orcidid>https://orcid.org/0000-0003-0331-9474</orcidid></search><sort><creationdate>201411</creationdate><title>Potential of fecal microbiota for early‐stage detection of colorectal cancer</title><author>Zeller, Georg ; Tap, Julien ; Voigt, Anita Y ; Sunagawa, Shinichi ; Kultima, Jens Roat ; Costea, Paul I ; Amiot, Aurélien ; Böhm, Jürgen ; Brunetti, Francesco ; Habermann, Nina ; Hercog, Rajna ; Koch, Moritz ; Luciani, Alain ; Mende, Daniel R ; Schneider, Martin A ; Schrotz‐King, Petra ; Tournigand, Christophe ; Tran Van Nhieu, Jeanne ; Yamada, Takuji ; Zimmermann, Jürgen ; Benes, Vladimir ; Kloor, Matthias ; Ulrich, Cornelia M ; von Knebel Doeberitz, Magnus ; Sobhani, Iradj ; Bork, Peer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Biodegradation</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Carbohydrates</topic><topic>Case-Control Studies</topic><topic>Colonoscopy</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Colorectal Neoplasms - microbiology</topic><topic>Community composition</topic><topic>Datasets</topic><topic>Digestive system</topic><topic>DNA damage</topic><topic>Early Detection of Cancer - methods</topic><topic>EMBO03</topic><topic>EMBO42</topic><topic>fecal biomarkers</topic><topic>Fecal microflora</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Gene pool</topic><topic>Genomes</topic><topic>human gut microbiome</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides</topic><topic>metagenomics</topic><topic>Metagenomics - methods</topic><topic>Microbiology and Parasitology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Molecular Typing</topic><topic>Occult Blood</topic><topic>Patients</topic><topic>Population studies</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeller, Georg</creatorcontrib><creatorcontrib>Tap, Julien</creatorcontrib><creatorcontrib>Voigt, Anita Y</creatorcontrib><creatorcontrib>Sunagawa, Shinichi</creatorcontrib><creatorcontrib>Kultima, Jens Roat</creatorcontrib><creatorcontrib>Costea, Paul I</creatorcontrib><creatorcontrib>Amiot, Aurélien</creatorcontrib><creatorcontrib>Böhm, Jürgen</creatorcontrib><creatorcontrib>Brunetti, Francesco</creatorcontrib><creatorcontrib>Habermann, Nina</creatorcontrib><creatorcontrib>Hercog, Rajna</creatorcontrib><creatorcontrib>Koch, Moritz</creatorcontrib><creatorcontrib>Luciani, Alain</creatorcontrib><creatorcontrib>Mende, Daniel R</creatorcontrib><creatorcontrib>Schneider, Martin A</creatorcontrib><creatorcontrib>Schrotz‐King, Petra</creatorcontrib><creatorcontrib>Tournigand, Christophe</creatorcontrib><creatorcontrib>Tran Van Nhieu, Jeanne</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Zimmermann, Jürgen</creatorcontrib><creatorcontrib>Benes, Vladimir</creatorcontrib><creatorcontrib>Kloor, Matthias</creatorcontrib><creatorcontrib>Ulrich, Cornelia M</creatorcontrib><creatorcontrib>von Knebel Doeberitz, Magnus</creatorcontrib><creatorcontrib>Sobhani, Iradj</creatorcontrib><creatorcontrib>Bork, Peer</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeller, Georg</au><au>Tap, Julien</au><au>Voigt, Anita Y</au><au>Sunagawa, Shinichi</au><au>Kultima, Jens Roat</au><au>Costea, Paul I</au><au>Amiot, Aurélien</au><au>Böhm, Jürgen</au><au>Brunetti, Francesco</au><au>Habermann, Nina</au><au>Hercog, Rajna</au><au>Koch, Moritz</au><au>Luciani, Alain</au><au>Mende, Daniel R</au><au>Schneider, Martin A</au><au>Schrotz‐King, Petra</au><au>Tournigand, Christophe</au><au>Tran Van Nhieu, Jeanne</au><au>Yamada, Takuji</au><au>Zimmermann, Jürgen</au><au>Benes, Vladimir</au><au>Kloor, Matthias</au><au>Ulrich, Cornelia M</au><au>von Knebel Doeberitz, Magnus</au><au>Sobhani, Iradj</au><au>Bork, Peer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of fecal microbiota for early‐stage detection of colorectal cancer</atitle><jtitle>Molecular systems biology</jtitle><stitle>Mol Syst Biol</stitle><addtitle>Mol Syst Biol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>10</volume><issue>11</issue><spage>766</spage><epage>n/a</epage><pages>766-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC‐associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor‐free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved &gt; 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early‐ and late‐stage cancer and could be validated in independent patient and control populations ( N  = 335) from different countries. CRC‐associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor‐related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism. Synopsis Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically. A classification model based on gut microbial marker species distinguishes CRC patients from controls with similar accuracy as the fecal occult blood test (FOBT), routinely used for clinical screening. Combining metagenomic data with the FOBT leads to a relative improvement in sensitivity of &gt; 45% over the FOBT alone at identical specificity. Detection accuracy of the metagenomic test is maintained in an independent study population and is still high for alternative microbiome readouts, such as the abundance of 16S rRNA OTUs or families of functionally related genes. Functional metagenomic analysis indicates an increased potential of CRC‐associated microbiota for degradation of host glycans and amino acids and for pro‐inflammatory lipopolysaccharide metabolism. Graphical Abstract Metagenomic profiling of fecal samples from colorectal cancer (CRC) patients in comparison with tumor‐free controls reveals strong associations between the gut microbiota and cancer. Their potential for noninvasive cancer screening is explored systematically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25432777</pmid><doi>10.15252/msb.20145645</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8998-5413</orcidid><orcidid>https://orcid.org/0000-0003-0331-9474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-4292
ispartof Molecular systems biology, 2014-11, Vol.10 (11), p.766-n/a
issn 1744-4292
1744-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7a655535a8c4478489a0a22b61348cf4
source Publicly Available Content Database; Wiley Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Biodegradation
Cancer
Cancer screening
Carbohydrates
Case-Control Studies
Colonoscopy
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - microbiology
Community composition
Datasets
Digestive system
DNA damage
Early Detection of Cancer - methods
EMBO03
EMBO42
fecal biomarkers
Fecal microflora
Feces
Feces - microbiology
Gene pool
Genomes
human gut microbiome
Humans
Life Sciences
Lipopolysaccharides
metagenomics
Metagenomics - methods
Microbiology and Parasitology
Microbiomes
Microbiota
Microorganisms
Molecular Typing
Occult Blood
Patients
Population studies
Sensitivity and Specificity
Studies
Tumors
title Potential of fecal microbiota for early‐stage detection of colorectal cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20fecal%20microbiota%20for%20early%E2%80%90stage%20detection%20of%20colorectal%20cancer&rft.jtitle=Molecular%20systems%20biology&rft.au=Zeller,%20Georg&rft.date=2014-11&rft.volume=10&rft.issue=11&rft.spage=766&rft.epage=n/a&rft.pages=766-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.20145645&rft_dat=%3Cproquest_doaj_%3E2290149798%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c7265-4636d7ad166e3cdf4e970e2edd9e390c3d2e9481d4ca5482b69a8a8804b4a1673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290149798&rft_id=info:pmid/25432777&rfr_iscdi=true