Loading…

Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies

The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability...

Full description

Saved in:
Bibliographic Details
Published in:Environments (Basel, Switzerland) Switzerland), 2024-07, Vol.11 (7), p.151
Main Authors: Klaoudatos, Dimitris, Karagyaurova, Teodora, Pitropakis, Theodoros G. I., Mari, Aikaterini, Patas, Dimitris R., Vidiadaki, Maria, Kokkinos, Konstantinos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3
container_end_page
container_issue 7
container_start_page 151
container_title Environments (Basel, Switzerland)
container_volume 11
creator Klaoudatos, Dimitris
Karagyaurova, Teodora
Pitropakis, Theodoros G. I.
Mari, Aikaterini
Patas, Dimitris R.
Vidiadaki, Maria
Kokkinos, Konstantinos
description The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.
doi_str_mv 10.3390/environments11070151
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803769579</galeid><doaj_id>oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795</doaj_id><sourcerecordid>A803769579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</originalsourceid><addsrcrecordid>eNptUsFqGzEQXUoLDUn-oAdBz06lnV1r1ZtrktZgt1DX52VWGjkya8mV5EB-qN9ZbVxKD2UEM3p6780gpqreCX4HoPgH8k8uBn8kn5MQXHLRilfVVc3lfAa16l7_U7-tblM6cF44HUiAq-rXA-ocYmIrb8czee38nt17g35PkQzbYHSe2PZE2lFizrP8SGxDxmWKET2hZ1vCj2zhy8HxObnEPmEq0uDZarf8yr6Xeu1SZss4iRyyXZq6bDPmAjuNI0Nv2DbYwgnH0zlPzxvKj8GEMexL45vqjcUx0e2ffF3tHu5_LL_M1t8-r5aL9UwDV3mmYGisAoOgh04rkAqEJW5MKwYpatFK0aqh1poGmGuoy7VpsRZ83hklhYXranXxNQEP_Sm6I8bnPqDrX4AQ9z3GMvJIvUTV8U5z23RtI5UZhNRStp0lGFCqtni9v3idYvh5ppT7QzjH8kepB941EoQSqrDuLqw9FlPnbcgRdQlDR6eDJ-sKvug4yLlq5SRoLgIdQ0qR7N8xBe-njej_txHwG92FrSU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084731919</pqid></control><display><type>article</type><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><source>Access via ProQuest (Open Access)</source><creator>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</creator><creatorcontrib>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</creatorcontrib><description>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</description><identifier>ISSN: 2076-3298</identifier><identifier>EISSN: 2076-3298</identifier><identifier>DOI: 10.3390/environments11070151</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biodiversity ; Biodiversity hot spots ; Bycatch ; Climate change ; Commercial fishing ; Cultural heritage ; Ecosystems ; Endangered &amp; extinct species ; Endangered species ; Eutrophication ; Extinction ; Fish ; Fisheries management ; Fishing ; Habitats ; Identification and classification ; IUCN ; Learning algorithms ; Machine learning ; Marine fish ; Marine fishes ; Overfishing ; Protection and preservation ; Regression models ; Soft computing ; Species extinction ; species vulnerability ; Statistical analysis ; Supervised learning ; Support vector machines ; Temperature ; Threat evaluation ; Threatened species ; Threats ; Wildlife conservation</subject><ispartof>Environments (Basel, Switzerland), 2024-07, Vol.11 (7), p.151</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</cites><orcidid>0000-0003-0818-0600 ; 0009-0005-9336-8449 ; 0000-0002-3873-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084731919/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084731919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Klaoudatos, Dimitris</creatorcontrib><creatorcontrib>Karagyaurova, Teodora</creatorcontrib><creatorcontrib>Pitropakis, Theodoros G. I.</creatorcontrib><creatorcontrib>Mari, Aikaterini</creatorcontrib><creatorcontrib>Patas, Dimitris R.</creatorcontrib><creatorcontrib>Vidiadaki, Maria</creatorcontrib><creatorcontrib>Kokkinos, Konstantinos</creatorcontrib><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><title>Environments (Basel, Switzerland)</title><description>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biodiversity</subject><subject>Biodiversity hot spots</subject><subject>Bycatch</subject><subject>Climate change</subject><subject>Commercial fishing</subject><subject>Cultural heritage</subject><subject>Ecosystems</subject><subject>Endangered &amp; extinct species</subject><subject>Endangered species</subject><subject>Eutrophication</subject><subject>Extinction</subject><subject>Fish</subject><subject>Fisheries management</subject><subject>Fishing</subject><subject>Habitats</subject><subject>Identification and classification</subject><subject>IUCN</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Marine fish</subject><subject>Marine fishes</subject><subject>Overfishing</subject><subject>Protection and preservation</subject><subject>Regression models</subject><subject>Soft computing</subject><subject>Species extinction</subject><subject>species vulnerability</subject><subject>Statistical analysis</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Threat evaluation</subject><subject>Threatened species</subject><subject>Threats</subject><subject>Wildlife conservation</subject><issn>2076-3298</issn><issn>2076-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFqGzEQXUoLDUn-oAdBz06lnV1r1ZtrktZgt1DX52VWGjkya8mV5EB-qN9ZbVxKD2UEM3p6780gpqreCX4HoPgH8k8uBn8kn5MQXHLRilfVVc3lfAa16l7_U7-tblM6cF44HUiAq-rXA-ocYmIrb8czee38nt17g35PkQzbYHSe2PZE2lFizrP8SGxDxmWKET2hZ1vCj2zhy8HxObnEPmEq0uDZarf8yr6Xeu1SZss4iRyyXZq6bDPmAjuNI0Nv2DbYwgnH0zlPzxvKj8GEMexL45vqjcUx0e2ffF3tHu5_LL_M1t8-r5aL9UwDV3mmYGisAoOgh04rkAqEJW5MKwYpatFK0aqh1poGmGuoy7VpsRZ83hklhYXranXxNQEP_Sm6I8bnPqDrX4AQ9z3GMvJIvUTV8U5z23RtI5UZhNRStp0lGFCqtni9v3idYvh5ppT7QzjH8kepB941EoQSqrDuLqw9FlPnbcgRdQlDR6eDJ-sKvug4yLlq5SRoLgIdQ0qR7N8xBe-njej_txHwG92FrSU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Klaoudatos, Dimitris</creator><creator>Karagyaurova, Teodora</creator><creator>Pitropakis, Theodoros G. I.</creator><creator>Mari, Aikaterini</creator><creator>Patas, Dimitris R.</creator><creator>Vidiadaki, Maria</creator><creator>Kokkinos, Konstantinos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0818-0600</orcidid><orcidid>https://orcid.org/0009-0005-9336-8449</orcidid><orcidid>https://orcid.org/0000-0002-3873-0493</orcidid></search><sort><creationdate>20240701</creationdate><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><author>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biodiversity</topic><topic>Biodiversity hot spots</topic><topic>Bycatch</topic><topic>Climate change</topic><topic>Commercial fishing</topic><topic>Cultural heritage</topic><topic>Ecosystems</topic><topic>Endangered &amp; extinct species</topic><topic>Endangered species</topic><topic>Eutrophication</topic><topic>Extinction</topic><topic>Fish</topic><topic>Fisheries management</topic><topic>Fishing</topic><topic>Habitats</topic><topic>Identification and classification</topic><topic>IUCN</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Marine fish</topic><topic>Marine fishes</topic><topic>Overfishing</topic><topic>Protection and preservation</topic><topic>Regression models</topic><topic>Soft computing</topic><topic>Species extinction</topic><topic>species vulnerability</topic><topic>Statistical analysis</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Threat evaluation</topic><topic>Threatened species</topic><topic>Threats</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klaoudatos, Dimitris</creatorcontrib><creatorcontrib>Karagyaurova, Teodora</creatorcontrib><creatorcontrib>Pitropakis, Theodoros G. I.</creatorcontrib><creatorcontrib>Mari, Aikaterini</creatorcontrib><creatorcontrib>Patas, Dimitris R.</creatorcontrib><creatorcontrib>Vidiadaki, Maria</creatorcontrib><creatorcontrib>Kokkinos, Konstantinos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Environments (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klaoudatos, Dimitris</au><au>Karagyaurova, Teodora</au><au>Pitropakis, Theodoros G. I.</au><au>Mari, Aikaterini</au><au>Patas, Dimitris R.</au><au>Vidiadaki, Maria</au><au>Kokkinos, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</atitle><jtitle>Environments (Basel, Switzerland)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>151</spage><pages>151-</pages><issn>2076-3298</issn><eissn>2076-3298</eissn><abstract>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/environments11070151</doi><orcidid>https://orcid.org/0000-0003-0818-0600</orcidid><orcidid>https://orcid.org/0009-0005-9336-8449</orcidid><orcidid>https://orcid.org/0000-0002-3873-0493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3298
ispartof Environments (Basel, Switzerland), 2024-07, Vol.11 (7), p.151
issn 2076-3298
2076-3298
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795
source Access via ProQuest (Open Access)
subjects Algorithms
Artificial intelligence
Biodiversity
Biodiversity hot spots
Bycatch
Climate change
Commercial fishing
Cultural heritage
Ecosystems
Endangered & extinct species
Endangered species
Eutrophication
Extinction
Fish
Fisheries management
Fishing
Habitats
Identification and classification
IUCN
Learning algorithms
Machine learning
Marine fish
Marine fishes
Overfishing
Protection and preservation
Regression models
Soft computing
Species extinction
species vulnerability
Statistical analysis
Supervised learning
Support vector machines
Temperature
Threat evaluation
Threatened species
Threats
Wildlife conservation
title Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Influencing%20Endangered%20Marine%20Species%20in%20the%20Mediterranean%20Sea:%20An%20Analysis%20Based%20on%20IUCN%20Red%20List%20Criteria%20Using%20Statistical%20and%20Soft%20Computing%20Methodologies&rft.jtitle=Environments%20(Basel,%20Switzerland)&rft.au=Klaoudatos,%20Dimitris&rft.date=2024-07-01&rft.volume=11&rft.issue=7&rft.spage=151&rft.pages=151-&rft.issn=2076-3298&rft.eissn=2076-3298&rft_id=info:doi/10.3390/environments11070151&rft_dat=%3Cgale_doaj_%3EA803769579%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084731919&rft_id=info:pmid/&rft_galeid=A803769579&rfr_iscdi=true