Loading…
Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies
The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability...
Saved in:
Published in: | Environments (Basel, Switzerland) Switzerland), 2024-07, Vol.11 (7), p.151 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3 |
container_end_page | |
container_issue | 7 |
container_start_page | 151 |
container_title | Environments (Basel, Switzerland) |
container_volume | 11 |
creator | Klaoudatos, Dimitris Karagyaurova, Teodora Pitropakis, Theodoros G. I. Mari, Aikaterini Patas, Dimitris R. Vidiadaki, Maria Kokkinos, Konstantinos |
description | The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information. |
doi_str_mv | 10.3390/environments11070151 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803769579</galeid><doaj_id>oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795</doaj_id><sourcerecordid>A803769579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</originalsourceid><addsrcrecordid>eNptUsFqGzEQXUoLDUn-oAdBz06lnV1r1ZtrktZgt1DX52VWGjkya8mV5EB-qN9ZbVxKD2UEM3p6780gpqreCX4HoPgH8k8uBn8kn5MQXHLRilfVVc3lfAa16l7_U7-tblM6cF44HUiAq-rXA-ocYmIrb8czee38nt17g35PkQzbYHSe2PZE2lFizrP8SGxDxmWKET2hZ1vCj2zhy8HxObnEPmEq0uDZarf8yr6Xeu1SZss4iRyyXZq6bDPmAjuNI0Nv2DbYwgnH0zlPzxvKj8GEMexL45vqjcUx0e2ffF3tHu5_LL_M1t8-r5aL9UwDV3mmYGisAoOgh04rkAqEJW5MKwYpatFK0aqh1poGmGuoy7VpsRZ83hklhYXranXxNQEP_Sm6I8bnPqDrX4AQ9z3GMvJIvUTV8U5z23RtI5UZhNRStp0lGFCqtni9v3idYvh5ppT7QzjH8kepB941EoQSqrDuLqw9FlPnbcgRdQlDR6eDJ-sKvug4yLlq5SRoLgIdQ0qR7N8xBe-njej_txHwG92FrSU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084731919</pqid></control><display><type>article</type><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><source>Access via ProQuest (Open Access)</source><creator>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</creator><creatorcontrib>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</creatorcontrib><description>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</description><identifier>ISSN: 2076-3298</identifier><identifier>EISSN: 2076-3298</identifier><identifier>DOI: 10.3390/environments11070151</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biodiversity ; Biodiversity hot spots ; Bycatch ; Climate change ; Commercial fishing ; Cultural heritage ; Ecosystems ; Endangered & extinct species ; Endangered species ; Eutrophication ; Extinction ; Fish ; Fisheries management ; Fishing ; Habitats ; Identification and classification ; IUCN ; Learning algorithms ; Machine learning ; Marine fish ; Marine fishes ; Overfishing ; Protection and preservation ; Regression models ; Soft computing ; Species extinction ; species vulnerability ; Statistical analysis ; Supervised learning ; Support vector machines ; Temperature ; Threat evaluation ; Threatened species ; Threats ; Wildlife conservation</subject><ispartof>Environments (Basel, Switzerland), 2024-07, Vol.11 (7), p.151</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</cites><orcidid>0000-0003-0818-0600 ; 0009-0005-9336-8449 ; 0000-0002-3873-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084731919/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084731919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Klaoudatos, Dimitris</creatorcontrib><creatorcontrib>Karagyaurova, Teodora</creatorcontrib><creatorcontrib>Pitropakis, Theodoros G. I.</creatorcontrib><creatorcontrib>Mari, Aikaterini</creatorcontrib><creatorcontrib>Patas, Dimitris R.</creatorcontrib><creatorcontrib>Vidiadaki, Maria</creatorcontrib><creatorcontrib>Kokkinos, Konstantinos</creatorcontrib><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><title>Environments (Basel, Switzerland)</title><description>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biodiversity</subject><subject>Biodiversity hot spots</subject><subject>Bycatch</subject><subject>Climate change</subject><subject>Commercial fishing</subject><subject>Cultural heritage</subject><subject>Ecosystems</subject><subject>Endangered & extinct species</subject><subject>Endangered species</subject><subject>Eutrophication</subject><subject>Extinction</subject><subject>Fish</subject><subject>Fisheries management</subject><subject>Fishing</subject><subject>Habitats</subject><subject>Identification and classification</subject><subject>IUCN</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Marine fish</subject><subject>Marine fishes</subject><subject>Overfishing</subject><subject>Protection and preservation</subject><subject>Regression models</subject><subject>Soft computing</subject><subject>Species extinction</subject><subject>species vulnerability</subject><subject>Statistical analysis</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><subject>Temperature</subject><subject>Threat evaluation</subject><subject>Threatened species</subject><subject>Threats</subject><subject>Wildlife conservation</subject><issn>2076-3298</issn><issn>2076-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFqGzEQXUoLDUn-oAdBz06lnV1r1ZtrktZgt1DX52VWGjkya8mV5EB-qN9ZbVxKD2UEM3p6780gpqreCX4HoPgH8k8uBn8kn5MQXHLRilfVVc3lfAa16l7_U7-tblM6cF44HUiAq-rXA-ocYmIrb8czee38nt17g35PkQzbYHSe2PZE2lFizrP8SGxDxmWKET2hZ1vCj2zhy8HxObnEPmEq0uDZarf8yr6Xeu1SZss4iRyyXZq6bDPmAjuNI0Nv2DbYwgnH0zlPzxvKj8GEMexL45vqjcUx0e2ffF3tHu5_LL_M1t8-r5aL9UwDV3mmYGisAoOgh04rkAqEJW5MKwYpatFK0aqh1poGmGuoy7VpsRZ83hklhYXranXxNQEP_Sm6I8bnPqDrX4AQ9z3GMvJIvUTV8U5z23RtI5UZhNRStp0lGFCqtni9v3idYvh5ppT7QzjH8kepB941EoQSqrDuLqw9FlPnbcgRdQlDR6eDJ-sKvug4yLlq5SRoLgIdQ0qR7N8xBe-njej_txHwG92FrSU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Klaoudatos, Dimitris</creator><creator>Karagyaurova, Teodora</creator><creator>Pitropakis, Theodoros G. I.</creator><creator>Mari, Aikaterini</creator><creator>Patas, Dimitris R.</creator><creator>Vidiadaki, Maria</creator><creator>Kokkinos, Konstantinos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0818-0600</orcidid><orcidid>https://orcid.org/0009-0005-9336-8449</orcidid><orcidid>https://orcid.org/0000-0002-3873-0493</orcidid></search><sort><creationdate>20240701</creationdate><title>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</title><author>Klaoudatos, Dimitris ; Karagyaurova, Teodora ; Pitropakis, Theodoros G. I. ; Mari, Aikaterini ; Patas, Dimitris R. ; Vidiadaki, Maria ; Kokkinos, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biodiversity</topic><topic>Biodiversity hot spots</topic><topic>Bycatch</topic><topic>Climate change</topic><topic>Commercial fishing</topic><topic>Cultural heritage</topic><topic>Ecosystems</topic><topic>Endangered & extinct species</topic><topic>Endangered species</topic><topic>Eutrophication</topic><topic>Extinction</topic><topic>Fish</topic><topic>Fisheries management</topic><topic>Fishing</topic><topic>Habitats</topic><topic>Identification and classification</topic><topic>IUCN</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Marine fish</topic><topic>Marine fishes</topic><topic>Overfishing</topic><topic>Protection and preservation</topic><topic>Regression models</topic><topic>Soft computing</topic><topic>Species extinction</topic><topic>species vulnerability</topic><topic>Statistical analysis</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><topic>Temperature</topic><topic>Threat evaluation</topic><topic>Threatened species</topic><topic>Threats</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klaoudatos, Dimitris</creatorcontrib><creatorcontrib>Karagyaurova, Teodora</creatorcontrib><creatorcontrib>Pitropakis, Theodoros G. I.</creatorcontrib><creatorcontrib>Mari, Aikaterini</creatorcontrib><creatorcontrib>Patas, Dimitris R.</creatorcontrib><creatorcontrib>Vidiadaki, Maria</creatorcontrib><creatorcontrib>Kokkinos, Konstantinos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Environments (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klaoudatos, Dimitris</au><au>Karagyaurova, Teodora</au><au>Pitropakis, Theodoros G. I.</au><au>Mari, Aikaterini</au><au>Patas, Dimitris R.</au><au>Vidiadaki, Maria</au><au>Kokkinos, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies</atitle><jtitle>Environments (Basel, Switzerland)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>151</spage><pages>151-</pages><issn>2076-3298</issn><eissn>2076-3298</eissn><abstract>The Mediterranean Sea is the second largest biodiversity hotspot on earth, with over 700 identified fish species is facing numerous threats. Of more than 6000 taxa assessed for the IUCN Red List, a minimum of 20% are threatened with extinction. A total of eight key factors that affect vulnerability of marine fish species in the Mediterranean Sea were identified using the scientific literature and expert-reviewed validated databases. A database of 157 teleost fish species with threat status ranging from least concern to critically endangered was compiled. Nominal logistic curves identified the factor thresholds on species vulnerability, namely, age at maturity, longevity, and asymptotic length at 8.45 years, 36 years, and 221 cm, respectively. A second-degree stepwise regression model identified four significant factors affecting the threat category of Mediterranean fish species, namely, overfishing, by-catch, pollution, and age at maturity according to their significance. Predictive analysis using supervised machine learning algorithms was further employed to predict the vulnerability of Mediterranean marine fish species, resulting in the development of a framework with classification accuracy of 87.3% and 86.6% for Support Vector Machine (SVM) and Gradient Boosting machine learning algorithms, respectively, with the ability to assess the degree of variability using limited information.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/environments11070151</doi><orcidid>https://orcid.org/0000-0003-0818-0600</orcidid><orcidid>https://orcid.org/0009-0005-9336-8449</orcidid><orcidid>https://orcid.org/0000-0002-3873-0493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3298 |
ispartof | Environments (Basel, Switzerland), 2024-07, Vol.11 (7), p.151 |
issn | 2076-3298 2076-3298 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7a9808c0f485479db17c7758fe3ba795 |
source | Access via ProQuest (Open Access) |
subjects | Algorithms Artificial intelligence Biodiversity Biodiversity hot spots Bycatch Climate change Commercial fishing Cultural heritage Ecosystems Endangered & extinct species Endangered species Eutrophication Extinction Fish Fisheries management Fishing Habitats Identification and classification IUCN Learning algorithms Machine learning Marine fish Marine fishes Overfishing Protection and preservation Regression models Soft computing Species extinction species vulnerability Statistical analysis Supervised learning Support vector machines Temperature Threat evaluation Threatened species Threats Wildlife conservation |
title | Factors Influencing Endangered Marine Species in the Mediterranean Sea: An Analysis Based on IUCN Red List Criteria Using Statistical and Soft Computing Methodologies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Influencing%20Endangered%20Marine%20Species%20in%20the%20Mediterranean%20Sea:%20An%20Analysis%20Based%20on%20IUCN%20Red%20List%20Criteria%20Using%20Statistical%20and%20Soft%20Computing%20Methodologies&rft.jtitle=Environments%20(Basel,%20Switzerland)&rft.au=Klaoudatos,%20Dimitris&rft.date=2024-07-01&rft.volume=11&rft.issue=7&rft.spage=151&rft.pages=151-&rft.issn=2076-3298&rft.eissn=2076-3298&rft_id=info:doi/10.3390/environments11070151&rft_dat=%3Cgale_doaj_%3EA803769579%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-93b4f93da3cb8c937931fe0dd51b712157159b2cceb36c3271545a21068d971f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084731919&rft_id=info:pmid/&rft_galeid=A803769579&rfr_iscdi=true |