Loading…
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, b...
Saved in:
Published in: | Frontiers in plant science 2022-04, Vol.13, p.800161-800161 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3 |
container_end_page | 800161 |
container_issue | |
container_start_page | 800161 |
container_title | Frontiers in plant science |
container_volume | 13 |
creator | Mathew, Boby Hauptmann, Andreas Léon, Jens Sillanpää, Mikko J |
description | Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets. |
doi_str_mv | 10.3389/fpls.2022.800161 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091</doaj_id><sourcerecordid>2665106117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</originalsourceid><addsrcrecordid>eNpVkU1P3DAQQK2qVUGUe08ox152O2MnTlKplSoEFGn7cWil3qyxPQHTbLy1syD-PVkCCHwZ2zPzPNYT4j3CUqmm_dht-ryUIOWyAUCNr8Q-al0uSi3_vn623xOHOV_BtCqAtq3fij1VVXWJUO-Lzz94m6hfUc7xUzEfpjDexPQvF9-Zx-I-V4ShOOMhroMrfiX2wY0hDu_Em476zIcP8UD8OT35ffxtsfp5dn78dbVw0wDjwjal9BalRmexI_C1qqySVCnCBmuLrtMNA_qu0WXrJVhiDZo9YYveO3Ugzmeuj3RlNimsKd2aSMHcX8R0YSiNwfVsaiLUrcWq7KC0dUmSSXYsPVdOQYsT68vM2mztmr3jYZz-_AL6MjOES3MRr02LAA3qCfDhAZDi_y3n0axDdtz3NHDcZiO1rhA0Yj2VwlzqUsw5cff0DILZSTQ7iWYn0cwSp5aj5-M9NTwqU3dkdJjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665106117</pqid></control><display><type>article</type><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><source>PubMed Central</source><creator>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</creator><creatorcontrib>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</creatorcontrib><description>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2022.800161</identifier><identifier>PMID: 35574107</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>genomic selection ; LASSO ; local epistasis ; neural networks ; Plant Science ; whole genome prediction</subject><ispartof>Frontiers in plant science, 2022-04, Vol.13, p.800161-800161</ispartof><rights>Copyright © 2022 Mathew, Hauptmann, Léon and Sillanpää.</rights><rights>Copyright © 2022 Mathew, Hauptmann, Léon and Sillanpää. 2022 Mathew, Hauptmann, Léon and Sillanpää</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</citedby><cites>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35574107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathew, Boby</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Léon, Jens</creatorcontrib><creatorcontrib>Sillanpää, Mikko J</creatorcontrib><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</description><subject>genomic selection</subject><subject>LASSO</subject><subject>local epistasis</subject><subject>neural networks</subject><subject>Plant Science</subject><subject>whole genome prediction</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1P3DAQQK2qVUGUe08ox152O2MnTlKplSoEFGn7cWil3qyxPQHTbLy1syD-PVkCCHwZ2zPzPNYT4j3CUqmm_dht-ryUIOWyAUCNr8Q-al0uSi3_vn623xOHOV_BtCqAtq3fij1VVXWJUO-Lzz94m6hfUc7xUzEfpjDexPQvF9-Zx-I-V4ShOOMhroMrfiX2wY0hDu_Em476zIcP8UD8OT35ffxtsfp5dn78dbVw0wDjwjal9BalRmexI_C1qqySVCnCBmuLrtMNA_qu0WXrJVhiDZo9YYveO3Ugzmeuj3RlNimsKd2aSMHcX8R0YSiNwfVsaiLUrcWq7KC0dUmSSXYsPVdOQYsT68vM2mztmr3jYZz-_AL6MjOES3MRr02LAA3qCfDhAZDi_y3n0axDdtz3NHDcZiO1rhA0Yj2VwlzqUsw5cff0DILZSTQ7iWYn0cwSp5aj5-M9NTwqU3dkdJjg</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Mathew, Boby</creator><creator>Hauptmann, Andreas</creator><creator>Léon, Jens</creator><creator>Sillanpää, Mikko J</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220429</creationdate><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><author>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>genomic selection</topic><topic>LASSO</topic><topic>local epistasis</topic><topic>neural networks</topic><topic>Plant Science</topic><topic>whole genome prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Boby</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Léon, Jens</creatorcontrib><creatorcontrib>Sillanpää, Mikko J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Boby</au><au>Hauptmann, Andreas</au><au>Léon, Jens</au><au>Sillanpää, Mikko J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>13</volume><spage>800161</spage><epage>800161</epage><pages>800161-800161</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35574107</pmid><doi>10.3389/fpls.2022.800161</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2022-04, Vol.13, p.800161-800161 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091 |
source | PubMed Central |
subjects | genomic selection LASSO local epistasis neural networks Plant Science whole genome prediction |
title | NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeuralLasso:%20Neural%20Networks%20Meet%20Lasso%20in%20Genomic%20Prediction&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Mathew,%20Boby&rft.date=2022-04-29&rft.volume=13&rft.spage=800161&rft.epage=800161&rft.pages=800161-800161&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2022.800161&rft_dat=%3Cproquest_doaj_%3E2665106117%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665106117&rft_id=info:pmid/35574107&rfr_iscdi=true |