Loading…

NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction

Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, b...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2022-04, Vol.13, p.800161-800161
Main Authors: Mathew, Boby, Hauptmann, Andreas, Léon, Jens, Sillanpää, Mikko J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3
cites cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3
container_end_page 800161
container_issue
container_start_page 800161
container_title Frontiers in plant science
container_volume 13
creator Mathew, Boby
Hauptmann, Andreas
Léon, Jens
Sillanpää, Mikko J
description Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.
doi_str_mv 10.3389/fpls.2022.800161
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091</doaj_id><sourcerecordid>2665106117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</originalsourceid><addsrcrecordid>eNpVkU1P3DAQQK2qVUGUe08ox152O2MnTlKplSoEFGn7cWil3qyxPQHTbLy1syD-PVkCCHwZ2zPzPNYT4j3CUqmm_dht-ryUIOWyAUCNr8Q-al0uSi3_vn623xOHOV_BtCqAtq3fij1VVXWJUO-Lzz94m6hfUc7xUzEfpjDexPQvF9-Zx-I-V4ShOOMhroMrfiX2wY0hDu_Em476zIcP8UD8OT35ffxtsfp5dn78dbVw0wDjwjal9BalRmexI_C1qqySVCnCBmuLrtMNA_qu0WXrJVhiDZo9YYveO3Ugzmeuj3RlNimsKd2aSMHcX8R0YSiNwfVsaiLUrcWq7KC0dUmSSXYsPVdOQYsT68vM2mztmr3jYZz-_AL6MjOES3MRr02LAA3qCfDhAZDi_y3n0axDdtz3NHDcZiO1rhA0Yj2VwlzqUsw5cff0DILZSTQ7iWYn0cwSp5aj5-M9NTwqU3dkdJjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665106117</pqid></control><display><type>article</type><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><source>PubMed Central</source><creator>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</creator><creatorcontrib>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</creatorcontrib><description>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2022.800161</identifier><identifier>PMID: 35574107</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>genomic selection ; LASSO ; local epistasis ; neural networks ; Plant Science ; whole genome prediction</subject><ispartof>Frontiers in plant science, 2022-04, Vol.13, p.800161-800161</ispartof><rights>Copyright © 2022 Mathew, Hauptmann, Léon and Sillanpää.</rights><rights>Copyright © 2022 Mathew, Hauptmann, Léon and Sillanpää. 2022 Mathew, Hauptmann, Léon and Sillanpää</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</citedby><cites>FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35574107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathew, Boby</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Léon, Jens</creatorcontrib><creatorcontrib>Sillanpää, Mikko J</creatorcontrib><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</description><subject>genomic selection</subject><subject>LASSO</subject><subject>local epistasis</subject><subject>neural networks</subject><subject>Plant Science</subject><subject>whole genome prediction</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1P3DAQQK2qVUGUe08ox152O2MnTlKplSoEFGn7cWil3qyxPQHTbLy1syD-PVkCCHwZ2zPzPNYT4j3CUqmm_dht-ryUIOWyAUCNr8Q-al0uSi3_vn623xOHOV_BtCqAtq3fij1VVXWJUO-Lzz94m6hfUc7xUzEfpjDexPQvF9-Zx-I-V4ShOOMhroMrfiX2wY0hDu_Em476zIcP8UD8OT35ffxtsfp5dn78dbVw0wDjwjal9BalRmexI_C1qqySVCnCBmuLrtMNA_qu0WXrJVhiDZo9YYveO3Ugzmeuj3RlNimsKd2aSMHcX8R0YSiNwfVsaiLUrcWq7KC0dUmSSXYsPVdOQYsT68vM2mztmr3jYZz-_AL6MjOES3MRr02LAA3qCfDhAZDi_y3n0axDdtz3NHDcZiO1rhA0Yj2VwlzqUsw5cff0DILZSTQ7iWYn0cwSp5aj5-M9NTwqU3dkdJjg</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Mathew, Boby</creator><creator>Hauptmann, Andreas</creator><creator>Léon, Jens</creator><creator>Sillanpää, Mikko J</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220429</creationdate><title>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</title><author>Mathew, Boby ; Hauptmann, Andreas ; Léon, Jens ; Sillanpää, Mikko J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>genomic selection</topic><topic>LASSO</topic><topic>local epistasis</topic><topic>neural networks</topic><topic>Plant Science</topic><topic>whole genome prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Boby</creatorcontrib><creatorcontrib>Hauptmann, Andreas</creatorcontrib><creatorcontrib>Léon, Jens</creatorcontrib><creatorcontrib>Sillanpää, Mikko J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Boby</au><au>Hauptmann, Andreas</au><au>Léon, Jens</au><au>Sillanpää, Mikko J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>13</volume><spage>800161</spage><epage>800161</epage><pages>800161-800161</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Prediction of complex traits based on genome-wide marker information is of central importance for both animal and plant breeding. Numerous models have been proposed for the prediction of complex traits and still considerable effort has been given to improve the prediction accuracy of these models, because various genetics factors like additive, dominance and epistasis effects can influence of the prediction accuracy of such models. Recently machine learning (ML) methods have been widely applied for prediction in both animal and plant breeding programs. In this study, we propose a new algorithm for genomic prediction which is based on neural networks, but incorporates classical elements of LASSO. Our new method is able to account for the local epistasis (higher order interaction between the neighboring markers) in the prediction. We compare the prediction accuracy of our new method with the most commonly used prediction methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic Net (EN) using the heterogenous stock mouse and rice field data sets.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35574107</pmid><doi>10.3389/fpls.2022.800161</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2022-04, Vol.13, p.800161-800161
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7aa169b154f04b74a2ea2fe2de5c3091
source PubMed Central
subjects genomic selection
LASSO
local epistasis
neural networks
Plant Science
whole genome prediction
title NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeuralLasso:%20Neural%20Networks%20Meet%20Lasso%20in%20Genomic%20Prediction&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Mathew,%20Boby&rft.date=2022-04-29&rft.volume=13&rft.spage=800161&rft.epage=800161&rft.pages=800161-800161&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2022.800161&rft_dat=%3Cproquest_doaj_%3E2665106117%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-b842db1261cb1fa0d735b32a53a1817b1cf68e01df8649d20bae606eda191ddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665106117&rft_id=info:pmid/35574107&rfr_iscdi=true