Loading…
Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods
Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at le...
Saved in:
Published in: | Shock and vibration 2019, Vol.2019 (2019), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63 |
container_end_page | 14 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Shock and vibration |
container_volume | 2019 |
creator | Vigsø, Michael Georgakis, Christos Brincker, Rune |
description | Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters. |
doi_str_mv | 10.1155/2019/9490760 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612367962</galeid><doaj_id>oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1</doaj_id><sourcerecordid>A612367962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</originalsourceid><addsrcrecordid>eNqFkc1rVDEUxR9iwdq6cy0PXOpr8_2xLMOoA1O6adfhvnzMZHh9qUnG4n9vxlcU3EgWCSe_c7jc03XvMbrCmPNrgrC-1kwjKdCr7hwryQdNEH3d3kiiQQtC3nRvSzkghDgV7LzbrX_AdIQa511f975fh-Bt7VPob5Pz03TS1zmnXPo499sErt84P9cYom2uNPcP5cSsJiilSdO_37e-7pMrl91ZgKn4dy_3RffwZX2_-jZs775uVjfbwTLB66ADBekls6PXYsReytEFxbSUFAPjAo2aiVFRrjVYO6pALYcRHHIuEBEEveg2S65LcDBPOT5C_mkSRPNbSHlnINdoJ28kwNi2gAOzgnlBQDkA7VRAikCwuGV9XLKecvp-9KWaQzrmuY1vCMWECYWpatTVQu2ghcY5pJrBtuP8Y7Rp9iE2_UZgQoVsDTTD58Vgcyol-_BnTIzMqUdz6tG89NjwTwu-j7OD5_g_-sNC-8b4AH9pgrHEnP4C7VenLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312468138</pqid></control><display><type>article</type><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune</creator><contributor>Silberschmidt, Vadim V. ; Vadim V Silberschmidt</contributor><creatorcontrib>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune ; Silberschmidt, Vadim V. ; Vadim V Silberschmidt</creatorcontrib><description>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2019/9490760</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Civil engineering ; Computer simulation ; Identification ; Identification methods ; Load distribution (forces) ; Mathematical models ; Methods ; Monte Carlo method ; Monte Carlo simulation ; Noise ; Parameter uncertainty ; Regularization methods ; Signal processing ; Spatial distribution ; Stress concentration ; Truncation errors</subject><ispartof>Shock and vibration, 2019, Vol.2019 (2019), p.1-14</ispartof><rights>Copyright © 2019 Michael Vigsø et al.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Michael Vigsø et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</citedby><cites>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</cites><orcidid>0000-0003-2109-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312468138/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312468138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Silberschmidt, Vadim V.</contributor><contributor>Vadim V Silberschmidt</contributor><creatorcontrib>Vigsø, Michael</creatorcontrib><creatorcontrib>Georgakis, Christos</creatorcontrib><creatorcontrib>Brincker, Rune</creatorcontrib><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><title>Shock and vibration</title><description>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</description><subject>Analysis</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Load distribution (forces)</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>Parameter uncertainty</subject><subject>Regularization methods</subject><subject>Signal processing</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Truncation errors</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rVDEUxR9iwdq6cy0PXOpr8_2xLMOoA1O6adfhvnzMZHh9qUnG4n9vxlcU3EgWCSe_c7jc03XvMbrCmPNrgrC-1kwjKdCr7hwryQdNEH3d3kiiQQtC3nRvSzkghDgV7LzbrX_AdIQa511f975fh-Bt7VPob5Pz03TS1zmnXPo499sErt84P9cYom2uNPcP5cSsJiilSdO_37e-7pMrl91ZgKn4dy_3RffwZX2_-jZs775uVjfbwTLB66ADBekls6PXYsReytEFxbSUFAPjAo2aiVFRrjVYO6pALYcRHHIuEBEEveg2S65LcDBPOT5C_mkSRPNbSHlnINdoJ28kwNi2gAOzgnlBQDkA7VRAikCwuGV9XLKecvp-9KWaQzrmuY1vCMWECYWpatTVQu2ghcY5pJrBtuP8Y7Rp9iE2_UZgQoVsDTTD58Vgcyol-_BnTIzMqUdz6tG89NjwTwu-j7OD5_g_-sNC-8b4AH9pgrHEnP4C7VenLg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Vigsø, Michael</creator><creator>Georgakis, Christos</creator><creator>Brincker, Rune</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2109-0618</orcidid></search><sort><creationdate>2019</creationdate><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><author>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Load distribution (forces)</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>Parameter uncertainty</topic><topic>Regularization methods</topic><topic>Signal processing</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigsø, Michael</creatorcontrib><creatorcontrib>Georgakis, Christos</creatorcontrib><creatorcontrib>Brincker, Rune</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigsø, Michael</au><au>Georgakis, Christos</au><au>Brincker, Rune</au><au>Silberschmidt, Vadim V.</au><au>Vadim V Silberschmidt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</atitle><jtitle>Shock and vibration</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9490760</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2109-0618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9622 |
ispartof | Shock and vibration, 2019, Vol.2019 (2019), p.1-14 |
issn | 1070-9622 1875-9203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Analysis Civil engineering Computer simulation Identification Identification methods Load distribution (forces) Mathematical models Methods Monte Carlo method Monte Carlo simulation Noise Parameter uncertainty Regularization methods Signal processing Spatial distribution Stress concentration Truncation errors |
title | Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Effect%20of%20Modelling%20Errors%20in%20Load%20Identification%20Using%20Classical%20Identification%20Methods&rft.jtitle=Shock%20and%20vibration&rft.au=Vigs%C3%B8,%20Michael&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2019/9490760&rft_dat=%3Cgale_doaj_%3EA612367962%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312468138&rft_id=info:pmid/&rft_galeid=A612367962&rfr_iscdi=true |