Loading…

Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods

Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at le...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2019, Vol.2019 (2019), p.1-14
Main Authors: Vigsø, Michael, Georgakis, Christos, Brincker, Rune
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63
cites cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63
container_end_page 14
container_issue 2019
container_start_page 1
container_title Shock and vibration
container_volume 2019
creator Vigsø, Michael
Georgakis, Christos
Brincker, Rune
description Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.
doi_str_mv 10.1155/2019/9490760
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612367962</galeid><doaj_id>oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1</doaj_id><sourcerecordid>A612367962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</originalsourceid><addsrcrecordid>eNqFkc1rVDEUxR9iwdq6cy0PXOpr8_2xLMOoA1O6adfhvnzMZHh9qUnG4n9vxlcU3EgWCSe_c7jc03XvMbrCmPNrgrC-1kwjKdCr7hwryQdNEH3d3kiiQQtC3nRvSzkghDgV7LzbrX_AdIQa511f975fh-Bt7VPob5Pz03TS1zmnXPo499sErt84P9cYom2uNPcP5cSsJiilSdO_37e-7pMrl91ZgKn4dy_3RffwZX2_-jZs775uVjfbwTLB66ADBekls6PXYsReytEFxbSUFAPjAo2aiVFRrjVYO6pALYcRHHIuEBEEveg2S65LcDBPOT5C_mkSRPNbSHlnINdoJ28kwNi2gAOzgnlBQDkA7VRAikCwuGV9XLKecvp-9KWaQzrmuY1vCMWECYWpatTVQu2ghcY5pJrBtuP8Y7Rp9iE2_UZgQoVsDTTD58Vgcyol-_BnTIzMqUdz6tG89NjwTwu-j7OD5_g_-sNC-8b4AH9pgrHEnP4C7VenLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312468138</pqid></control><display><type>article</type><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune</creator><contributor>Silberschmidt, Vadim V. ; Vadim V Silberschmidt</contributor><creatorcontrib>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune ; Silberschmidt, Vadim V. ; Vadim V Silberschmidt</creatorcontrib><description>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2019/9490760</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Civil engineering ; Computer simulation ; Identification ; Identification methods ; Load distribution (forces) ; Mathematical models ; Methods ; Monte Carlo method ; Monte Carlo simulation ; Noise ; Parameter uncertainty ; Regularization methods ; Signal processing ; Spatial distribution ; Stress concentration ; Truncation errors</subject><ispartof>Shock and vibration, 2019, Vol.2019 (2019), p.1-14</ispartof><rights>Copyright © 2019 Michael Vigsø et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Michael Vigsø et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</citedby><cites>FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</cites><orcidid>0000-0003-2109-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2312468138/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2312468138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Silberschmidt, Vadim V.</contributor><contributor>Vadim V Silberschmidt</contributor><creatorcontrib>Vigsø, Michael</creatorcontrib><creatorcontrib>Georgakis, Christos</creatorcontrib><creatorcontrib>Brincker, Rune</creatorcontrib><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><title>Shock and vibration</title><description>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</description><subject>Analysis</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Load distribution (forces)</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>Parameter uncertainty</subject><subject>Regularization methods</subject><subject>Signal processing</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Truncation errors</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rVDEUxR9iwdq6cy0PXOpr8_2xLMOoA1O6adfhvnzMZHh9qUnG4n9vxlcU3EgWCSe_c7jc03XvMbrCmPNrgrC-1kwjKdCr7hwryQdNEH3d3kiiQQtC3nRvSzkghDgV7LzbrX_AdIQa511f975fh-Bt7VPob5Pz03TS1zmnXPo499sErt84P9cYom2uNPcP5cSsJiilSdO_37e-7pMrl91ZgKn4dy_3RffwZX2_-jZs775uVjfbwTLB66ADBekls6PXYsReytEFxbSUFAPjAo2aiVFRrjVYO6pALYcRHHIuEBEEveg2S65LcDBPOT5C_mkSRPNbSHlnINdoJ28kwNi2gAOzgnlBQDkA7VRAikCwuGV9XLKecvp-9KWaQzrmuY1vCMWECYWpatTVQu2ghcY5pJrBtuP8Y7Rp9iE2_UZgQoVsDTTD58Vgcyol-_BnTIzMqUdz6tG89NjwTwu-j7OD5_g_-sNC-8b4AH9pgrHEnP4C7VenLg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Vigsø, Michael</creator><creator>Georgakis, Christos</creator><creator>Brincker, Rune</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2109-0618</orcidid></search><sort><creationdate>2019</creationdate><title>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</title><author>Vigsø, Michael ; Georgakis, Christos ; Brincker, Rune</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Load distribution (forces)</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>Parameter uncertainty</topic><topic>Regularization methods</topic><topic>Signal processing</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigsø, Michael</creatorcontrib><creatorcontrib>Georgakis, Christos</creatorcontrib><creatorcontrib>Brincker, Rune</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigsø, Michael</au><au>Georgakis, Christos</au><au>Brincker, Rune</au><au>Silberschmidt, Vadim V.</au><au>Vadim V Silberschmidt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods</atitle><jtitle>Shock and vibration</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Load identification, or input identification as the more general term, is a field of study that requires a wide set of disciplines, which suffers from uncertainties caused by the challenges within each discipline. When making load identification, several different approaches exist. For all (or at least most) methods, however, some sort of system model is required. This model may be simple or complex, depending on the system at hand. Typically, if the identification process is vibration fed, the system model will be created from modal parameters. These parameters, however, are often subject to uncertainty and thus may be considered as stochastic variables. In this paper, the root causes of uncertainty for load identification are demonstrated using classical identification techniques. From a numerical perspective, uncertainty is quantified through Monte Carlo simulations. Two results are outlined: one where the identification process is completely blindfolded in its most naive form, and one where the spatial distribution of the load is predefined. In general, it is found that fixing the spatial distribution of the load can compensate for truncation errors in the modal parameters.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9490760</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2109-0618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2019, Vol.2019 (2019), p.1-14
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7aab0531f4c64e62a8daa9d8f082afc1
source Publicly Available Content Database; Wiley Open Access
subjects Analysis
Civil engineering
Computer simulation
Identification
Identification methods
Load distribution (forces)
Mathematical models
Methods
Monte Carlo method
Monte Carlo simulation
Noise
Parameter uncertainty
Regularization methods
Signal processing
Spatial distribution
Stress concentration
Truncation errors
title Evaluating the Effect of Modelling Errors in Load Identification Using Classical Identification Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Effect%20of%20Modelling%20Errors%20in%20Load%20Identification%20Using%20Classical%20Identification%20Methods&rft.jtitle=Shock%20and%20vibration&rft.au=Vigs%C3%B8,%20Michael&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2019/9490760&rft_dat=%3Cgale_doaj_%3EA612367962%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-9f3a7e74cbe96b1e77bdf8497731a4560b946b83599accb8f3c5abad0ddf26f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312468138&rft_id=info:pmid/&rft_galeid=A612367962&rfr_iscdi=true