Loading…
Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)
Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to as...
Saved in:
Published in: | Antioxidants 2021-03, Vol.10 (3), p.378 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3 |
container_end_page | |
container_issue | 3 |
container_start_page | 378 |
container_title | Antioxidants |
container_volume | 10 |
creator | Blottner, Dieter Capitanio, Daniele Trautmann, Gabor Furlan, Sandra Gambara, Guido Moriggi, Manuela Block, Katharina Barbacini, Pietro Torretta, Enrica Py, Guillaume Chopard, Angèle Vida, Imre Volpe, Pompeo Gelfi, Cecilia Salanova, Michele |
description | Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis,
) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo,
= 10) vs. the antioxidant cocktail treated group (Treatment,
= 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest. |
doi_str_mv | 10.3390/antiox10030378 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834</doaj_id><sourcerecordid>2508561126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</originalsourceid><addsrcrecordid>eNpdUsFuEzEQXSEQrUqvHJElLu0hxd7x7toXpJACqRRAgsDV8q5nU4fNOtjeqP2LfnKdpFRNfRlr_OY9z9PLsreMXgBI-kH30bobRilQqMSL7DinVTkCmbOXT-5H2WkIS5qOZCCofJ0dQap5IeE4u_tuo3dBR7tB8hONuyFTt0IXog42EN0bMt6pWJPUEiKsXR-QXGKL22p7cmnDENCQPzrEIZBOR_S6S8PfhtB0O8jM9YvRHP2KfELjMURyNndD59Icmbjmb9S2I7_iYG7P32SvWt0FPH2oJ9nvL5_nk-lo9uPr1WQ8GzUFE3EEQhe11qw0HCrUlQSKLC8q3pa8kQzrFmpWlyBrAC4MLTSVbQt5JarkQ27gJLva8xqnl2rt7Ur7W-W0VbuG8wulfbRpAVVpgyVvTQGt4bICXQtZc9aUTd0wATxxfdxzrYd6habBPiYHDkgPX3p7rRZuowSljJU0EZzvCa6fjU3HM7XtUWCSMw4blrBnD2Le_RuSl2plQ4Ndp3tMhqq8oKIoGcvLBH3_DLp0g--TrQmVc85kLrbiF3tUk4IQPLaPP2BUbXOmDnOWBt49XfcR_j9VcA8yAtAC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524419280</pqid></control><display><type>article</type><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</creator><creatorcontrib>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</creatorcontrib><description>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis,
) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo,
= 10) vs. the antioxidant cocktail treated group (Treatment,
= 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox10030378</identifier><identifier>PMID: 33802593</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace medicine ; antioxidant systems ; Antioxidants ; Atrophy ; bedrest muscle disuse ; Biochemistry, Molecular Biology ; Biopsy ; Confocal microscopy ; Exercise ; GA-binding protein ; Glycolysis ; Homeostasis ; Life Sciences ; Local anesthesia ; Mass spectrometry ; Metabolism ; Mitochondria ; Musculoskeletal system ; Myogenesis ; Nitrogen ; Oxidative phosphorylation ; Oxidative stress ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Physical fitness ; Placebos ; Polyphenols ; Protein folding ; Protein synthesis ; Proteins ; Reactive nitrogen species ; Reactive oxygen species ; RNS in cell signaling ; Ryanodine receptors ; sarcopenia ; Scientific imaging ; Selenium ; Signal transduction ; Skeletal muscle ; skeletal muscle redox homeostasis ; Tricarboxylic acid cycle ; Vitamin E</subject><ispartof>Antioxidants, 2021-03, Vol.10 (3), p.378</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</citedby><cites>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</cites><orcidid>0000-0002-8917-2962 ; 0000-0003-3214-2233 ; 0000-0001-7701-728X ; 0000-0003-0355-3340 ; 0000-0002-6230-8663 ; 0000-0002-6374-3325 ; 0000-0002-4718-0307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2524419280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2524419280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33802593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03194143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Trautmann, Gabor</creatorcontrib><creatorcontrib>Furlan, Sandra</creatorcontrib><creatorcontrib>Gambara, Guido</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Block, Katharina</creatorcontrib><creatorcontrib>Barbacini, Pietro</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Py, Guillaume</creatorcontrib><creatorcontrib>Chopard, Angèle</creatorcontrib><creatorcontrib>Vida, Imre</creatorcontrib><creatorcontrib>Volpe, Pompeo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><title>Antioxidants</title><addtitle>Antioxidants (Basel)</addtitle><description>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis,
) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo,
= 10) vs. the antioxidant cocktail treated group (Treatment,
= 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</description><subject>Aerospace medicine</subject><subject>antioxidant systems</subject><subject>Antioxidants</subject><subject>Atrophy</subject><subject>bedrest muscle disuse</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biopsy</subject><subject>Confocal microscopy</subject><subject>Exercise</subject><subject>GA-binding protein</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Local anesthesia</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Nitrogen</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative stress</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Physical fitness</subject><subject>Placebos</subject><subject>Polyphenols</subject><subject>Protein folding</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Reactive nitrogen species</subject><subject>Reactive oxygen species</subject><subject>RNS in cell signaling</subject><subject>Ryanodine receptors</subject><subject>sarcopenia</subject><subject>Scientific imaging</subject><subject>Selenium</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>skeletal muscle redox homeostasis</subject><subject>Tricarboxylic acid cycle</subject><subject>Vitamin E</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFuEzEQXSEQrUqvHJElLu0hxd7x7toXpJACqRRAgsDV8q5nU4fNOtjeqP2LfnKdpFRNfRlr_OY9z9PLsreMXgBI-kH30bobRilQqMSL7DinVTkCmbOXT-5H2WkIS5qOZCCofJ0dQap5IeE4u_tuo3dBR7tB8hONuyFTt0IXog42EN0bMt6pWJPUEiKsXR-QXGKL22p7cmnDENCQPzrEIZBOR_S6S8PfhtB0O8jM9YvRHP2KfELjMURyNndD59Icmbjmb9S2I7_iYG7P32SvWt0FPH2oJ9nvL5_nk-lo9uPr1WQ8GzUFE3EEQhe11qw0HCrUlQSKLC8q3pa8kQzrFmpWlyBrAC4MLTSVbQt5JarkQ27gJLva8xqnl2rt7Ur7W-W0VbuG8wulfbRpAVVpgyVvTQGt4bICXQtZc9aUTd0wATxxfdxzrYd6habBPiYHDkgPX3p7rRZuowSljJU0EZzvCa6fjU3HM7XtUWCSMw4blrBnD2Le_RuSl2plQ4Ndp3tMhqq8oKIoGcvLBH3_DLp0g--TrQmVc85kLrbiF3tUk4IQPLaPP2BUbXOmDnOWBt49XfcR_j9VcA8yAtAC</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Blottner, Dieter</creator><creator>Capitanio, Daniele</creator><creator>Trautmann, Gabor</creator><creator>Furlan, Sandra</creator><creator>Gambara, Guido</creator><creator>Moriggi, Manuela</creator><creator>Block, Katharina</creator><creator>Barbacini, Pietro</creator><creator>Torretta, Enrica</creator><creator>Py, Guillaume</creator><creator>Chopard, Angèle</creator><creator>Vida, Imre</creator><creator>Volpe, Pompeo</creator><creator>Gelfi, Cecilia</creator><creator>Salanova, Michele</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8917-2962</orcidid><orcidid>https://orcid.org/0000-0003-3214-2233</orcidid><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0003-0355-3340</orcidid><orcidid>https://orcid.org/0000-0002-6230-8663</orcidid><orcidid>https://orcid.org/0000-0002-6374-3325</orcidid><orcidid>https://orcid.org/0000-0002-4718-0307</orcidid></search><sort><creationdate>20210303</creationdate><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><author>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace medicine</topic><topic>antioxidant systems</topic><topic>Antioxidants</topic><topic>Atrophy</topic><topic>bedrest muscle disuse</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biopsy</topic><topic>Confocal microscopy</topic><topic>Exercise</topic><topic>GA-binding protein</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Local anesthesia</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Nitrogen</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative stress</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Physical fitness</topic><topic>Placebos</topic><topic>Polyphenols</topic><topic>Protein folding</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Reactive nitrogen species</topic><topic>Reactive oxygen species</topic><topic>RNS in cell signaling</topic><topic>Ryanodine receptors</topic><topic>sarcopenia</topic><topic>Scientific imaging</topic><topic>Selenium</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>skeletal muscle redox homeostasis</topic><topic>Tricarboxylic acid cycle</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Trautmann, Gabor</creatorcontrib><creatorcontrib>Furlan, Sandra</creatorcontrib><creatorcontrib>Gambara, Guido</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Block, Katharina</creatorcontrib><creatorcontrib>Barbacini, Pietro</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Py, Guillaume</creatorcontrib><creatorcontrib>Chopard, Angèle</creatorcontrib><creatorcontrib>Vida, Imre</creatorcontrib><creatorcontrib>Volpe, Pompeo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blottner, Dieter</au><au>Capitanio, Daniele</au><au>Trautmann, Gabor</au><au>Furlan, Sandra</au><au>Gambara, Guido</au><au>Moriggi, Manuela</au><au>Block, Katharina</au><au>Barbacini, Pietro</au><au>Torretta, Enrica</au><au>Py, Guillaume</au><au>Chopard, Angèle</au><au>Vida, Imre</au><au>Volpe, Pompeo</au><au>Gelfi, Cecilia</au><au>Salanova, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</atitle><jtitle>Antioxidants</jtitle><addtitle>Antioxidants (Basel)</addtitle><date>2021-03-03</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><spage>378</spage><pages>378-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis,
) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo,
= 10) vs. the antioxidant cocktail treated group (Treatment,
= 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33802593</pmid><doi>10.3390/antiox10030378</doi><orcidid>https://orcid.org/0000-0002-8917-2962</orcidid><orcidid>https://orcid.org/0000-0003-3214-2233</orcidid><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0003-0355-3340</orcidid><orcidid>https://orcid.org/0000-0002-6230-8663</orcidid><orcidid>https://orcid.org/0000-0002-6374-3325</orcidid><orcidid>https://orcid.org/0000-0002-4718-0307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3921 |
ispartof | Antioxidants, 2021-03, Vol.10 (3), p.378 |
issn | 2076-3921 2076-3921 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834 |
source | Publicly Available Content Database; PubMed Central |
subjects | Aerospace medicine antioxidant systems Antioxidants Atrophy bedrest muscle disuse Biochemistry, Molecular Biology Biopsy Confocal microscopy Exercise GA-binding protein Glycolysis Homeostasis Life Sciences Local anesthesia Mass spectrometry Metabolism Mitochondria Musculoskeletal system Myogenesis Nitrogen Oxidative phosphorylation Oxidative stress Pharmaceutical sciences Pharmacology Phosphorylation Physical fitness Placebos Polyphenols Protein folding Protein synthesis Proteins Reactive nitrogen species Reactive oxygen species RNS in cell signaling Ryanodine receptors sarcopenia Scientific imaging Selenium Signal transduction Skeletal muscle skeletal muscle redox homeostasis Tricarboxylic acid cycle Vitamin E |
title | Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrosative%20Redox%20Homeostasis%20and%20Antioxidant%20Response%20Defense%20in%20Disused%20Vastus%20lateralis%20Muscle%20in%20Long-Term%20Bedrest%20(Toulouse%20Cocktail%20Study)&rft.jtitle=Antioxidants&rft.au=Blottner,%20Dieter&rft.date=2021-03-03&rft.volume=10&rft.issue=3&rft.spage=378&rft.pages=378-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox10030378&rft_dat=%3Cproquest_doaj_%3E2508561126%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524419280&rft_id=info:pmid/33802593&rfr_iscdi=true |