Loading…

Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)

Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to as...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2021-03, Vol.10 (3), p.378
Main Authors: Blottner, Dieter, Capitanio, Daniele, Trautmann, Gabor, Furlan, Sandra, Gambara, Guido, Moriggi, Manuela, Block, Katharina, Barbacini, Pietro, Torretta, Enrica, Py, Guillaume, Chopard, Angèle, Vida, Imre, Volpe, Pompeo, Gelfi, Cecilia, Salanova, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3
cites cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3
container_end_page
container_issue 3
container_start_page 378
container_title Antioxidants
container_volume 10
creator Blottner, Dieter
Capitanio, Daniele
Trautmann, Gabor
Furlan, Sandra
Gambara, Guido
Moriggi, Manuela
Block, Katharina
Barbacini, Pietro
Torretta, Enrica
Py, Guillaume
Chopard, Angèle
Vida, Imre
Volpe, Pompeo
Gelfi, Cecilia
Salanova, Michele
description Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, = 10) vs. the antioxidant cocktail treated group (Treatment, = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.
doi_str_mv 10.3390/antiox10030378
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834</doaj_id><sourcerecordid>2508561126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</originalsourceid><addsrcrecordid>eNpdUsFuEzEQXSEQrUqvHJElLu0hxd7x7toXpJACqRRAgsDV8q5nU4fNOtjeqP2LfnKdpFRNfRlr_OY9z9PLsreMXgBI-kH30bobRilQqMSL7DinVTkCmbOXT-5H2WkIS5qOZCCofJ0dQap5IeE4u_tuo3dBR7tB8hONuyFTt0IXog42EN0bMt6pWJPUEiKsXR-QXGKL22p7cmnDENCQPzrEIZBOR_S6S8PfhtB0O8jM9YvRHP2KfELjMURyNndD59Icmbjmb9S2I7_iYG7P32SvWt0FPH2oJ9nvL5_nk-lo9uPr1WQ8GzUFE3EEQhe11qw0HCrUlQSKLC8q3pa8kQzrFmpWlyBrAC4MLTSVbQt5JarkQ27gJLva8xqnl2rt7Ur7W-W0VbuG8wulfbRpAVVpgyVvTQGt4bICXQtZc9aUTd0wATxxfdxzrYd6habBPiYHDkgPX3p7rRZuowSljJU0EZzvCa6fjU3HM7XtUWCSMw4blrBnD2Le_RuSl2plQ4Ndp3tMhqq8oKIoGcvLBH3_DLp0g--TrQmVc85kLrbiF3tUk4IQPLaPP2BUbXOmDnOWBt49XfcR_j9VcA8yAtAC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524419280</pqid></control><display><type>article</type><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</creator><creatorcontrib>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</creatorcontrib><description>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, = 10) vs. the antioxidant cocktail treated group (Treatment, = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox10030378</identifier><identifier>PMID: 33802593</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerospace medicine ; antioxidant systems ; Antioxidants ; Atrophy ; bedrest muscle disuse ; Biochemistry, Molecular Biology ; Biopsy ; Confocal microscopy ; Exercise ; GA-binding protein ; Glycolysis ; Homeostasis ; Life Sciences ; Local anesthesia ; Mass spectrometry ; Metabolism ; Mitochondria ; Musculoskeletal system ; Myogenesis ; Nitrogen ; Oxidative phosphorylation ; Oxidative stress ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Physical fitness ; Placebos ; Polyphenols ; Protein folding ; Protein synthesis ; Proteins ; Reactive nitrogen species ; Reactive oxygen species ; RNS in cell signaling ; Ryanodine receptors ; sarcopenia ; Scientific imaging ; Selenium ; Signal transduction ; Skeletal muscle ; skeletal muscle redox homeostasis ; Tricarboxylic acid cycle ; Vitamin E</subject><ispartof>Antioxidants, 2021-03, Vol.10 (3), p.378</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</citedby><cites>FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</cites><orcidid>0000-0002-8917-2962 ; 0000-0003-3214-2233 ; 0000-0001-7701-728X ; 0000-0003-0355-3340 ; 0000-0002-6230-8663 ; 0000-0002-6374-3325 ; 0000-0002-4718-0307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2524419280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2524419280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33802593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03194143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Trautmann, Gabor</creatorcontrib><creatorcontrib>Furlan, Sandra</creatorcontrib><creatorcontrib>Gambara, Guido</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Block, Katharina</creatorcontrib><creatorcontrib>Barbacini, Pietro</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Py, Guillaume</creatorcontrib><creatorcontrib>Chopard, Angèle</creatorcontrib><creatorcontrib>Vida, Imre</creatorcontrib><creatorcontrib>Volpe, Pompeo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><title>Antioxidants</title><addtitle>Antioxidants (Basel)</addtitle><description>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, = 10) vs. the antioxidant cocktail treated group (Treatment, = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</description><subject>Aerospace medicine</subject><subject>antioxidant systems</subject><subject>Antioxidants</subject><subject>Atrophy</subject><subject>bedrest muscle disuse</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biopsy</subject><subject>Confocal microscopy</subject><subject>Exercise</subject><subject>GA-binding protein</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Local anesthesia</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Nitrogen</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative stress</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Physical fitness</subject><subject>Placebos</subject><subject>Polyphenols</subject><subject>Protein folding</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Reactive nitrogen species</subject><subject>Reactive oxygen species</subject><subject>RNS in cell signaling</subject><subject>Ryanodine receptors</subject><subject>sarcopenia</subject><subject>Scientific imaging</subject><subject>Selenium</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>skeletal muscle redox homeostasis</subject><subject>Tricarboxylic acid cycle</subject><subject>Vitamin E</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFuEzEQXSEQrUqvHJElLu0hxd7x7toXpJACqRRAgsDV8q5nU4fNOtjeqP2LfnKdpFRNfRlr_OY9z9PLsreMXgBI-kH30bobRilQqMSL7DinVTkCmbOXT-5H2WkIS5qOZCCofJ0dQap5IeE4u_tuo3dBR7tB8hONuyFTt0IXog42EN0bMt6pWJPUEiKsXR-QXGKL22p7cmnDENCQPzrEIZBOR_S6S8PfhtB0O8jM9YvRHP2KfELjMURyNndD59Icmbjmb9S2I7_iYG7P32SvWt0FPH2oJ9nvL5_nk-lo9uPr1WQ8GzUFE3EEQhe11qw0HCrUlQSKLC8q3pa8kQzrFmpWlyBrAC4MLTSVbQt5JarkQ27gJLva8xqnl2rt7Ur7W-W0VbuG8wulfbRpAVVpgyVvTQGt4bICXQtZc9aUTd0wATxxfdxzrYd6habBPiYHDkgPX3p7rRZuowSljJU0EZzvCa6fjU3HM7XtUWCSMw4blrBnD2Le_RuSl2plQ4Ndp3tMhqq8oKIoGcvLBH3_DLp0g--TrQmVc85kLrbiF3tUk4IQPLaPP2BUbXOmDnOWBt49XfcR_j9VcA8yAtAC</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Blottner, Dieter</creator><creator>Capitanio, Daniele</creator><creator>Trautmann, Gabor</creator><creator>Furlan, Sandra</creator><creator>Gambara, Guido</creator><creator>Moriggi, Manuela</creator><creator>Block, Katharina</creator><creator>Barbacini, Pietro</creator><creator>Torretta, Enrica</creator><creator>Py, Guillaume</creator><creator>Chopard, Angèle</creator><creator>Vida, Imre</creator><creator>Volpe, Pompeo</creator><creator>Gelfi, Cecilia</creator><creator>Salanova, Michele</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8917-2962</orcidid><orcidid>https://orcid.org/0000-0003-3214-2233</orcidid><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0003-0355-3340</orcidid><orcidid>https://orcid.org/0000-0002-6230-8663</orcidid><orcidid>https://orcid.org/0000-0002-6374-3325</orcidid><orcidid>https://orcid.org/0000-0002-4718-0307</orcidid></search><sort><creationdate>20210303</creationdate><title>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</title><author>Blottner, Dieter ; Capitanio, Daniele ; Trautmann, Gabor ; Furlan, Sandra ; Gambara, Guido ; Moriggi, Manuela ; Block, Katharina ; Barbacini, Pietro ; Torretta, Enrica ; Py, Guillaume ; Chopard, Angèle ; Vida, Imre ; Volpe, Pompeo ; Gelfi, Cecilia ; Salanova, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace medicine</topic><topic>antioxidant systems</topic><topic>Antioxidants</topic><topic>Atrophy</topic><topic>bedrest muscle disuse</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biopsy</topic><topic>Confocal microscopy</topic><topic>Exercise</topic><topic>GA-binding protein</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Local anesthesia</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Nitrogen</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative stress</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Physical fitness</topic><topic>Placebos</topic><topic>Polyphenols</topic><topic>Protein folding</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Reactive nitrogen species</topic><topic>Reactive oxygen species</topic><topic>RNS in cell signaling</topic><topic>Ryanodine receptors</topic><topic>sarcopenia</topic><topic>Scientific imaging</topic><topic>Selenium</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>skeletal muscle redox homeostasis</topic><topic>Tricarboxylic acid cycle</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Trautmann, Gabor</creatorcontrib><creatorcontrib>Furlan, Sandra</creatorcontrib><creatorcontrib>Gambara, Guido</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Block, Katharina</creatorcontrib><creatorcontrib>Barbacini, Pietro</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Py, Guillaume</creatorcontrib><creatorcontrib>Chopard, Angèle</creatorcontrib><creatorcontrib>Vida, Imre</creatorcontrib><creatorcontrib>Volpe, Pompeo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blottner, Dieter</au><au>Capitanio, Daniele</au><au>Trautmann, Gabor</au><au>Furlan, Sandra</au><au>Gambara, Guido</au><au>Moriggi, Manuela</au><au>Block, Katharina</au><au>Barbacini, Pietro</au><au>Torretta, Enrica</au><au>Py, Guillaume</au><au>Chopard, Angèle</au><au>Vida, Imre</au><au>Volpe, Pompeo</au><au>Gelfi, Cecilia</au><au>Salanova, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)</atitle><jtitle>Antioxidants</jtitle><addtitle>Antioxidants (Basel)</addtitle><date>2021-03-03</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><spage>378</spage><pages>378-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Increased oxidative stress by reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a major determinant of disuse-induced muscle atrophy. Muscle biopsies (thigh vastus lateralis, ) obtained from healthy male subjects enrolled in the Toulouse Cocktail bedrest (BR) study were used to assess efficacy of an antioxidant cocktail (polyphenols, omega-3, vitamin E, and selenium) to counteract the increased redox homeostasis and enhance the antioxidant defense response by using label-free LC-MS/MS and NITRO-DIGE (nitrosated proteins), qPCR, and laser confocal microscopy. Label-free LC-MS/MS indicated that treatment prevented the redox homeostasis dysregulation and promoted structural remodeling (TPM3, MYH7, MYBPC, MYH1, MYL1, HRC, and LUM), increment of RyR1, myogenesis (CSRP3), and skeletal muscle development (MUSTN1, LMNA, AHNAK). These changes were absent in the Placebo group. Glycolysis, tricarboxylic acid cycle (TCA), oxidative phosphorylation, fatty acid beta-oxidation, and mitochondrial transmembrane transport were normalized in treated subjects. Proteins involved in protein folding were also normalized, whereas protein entailed in ion homeostasis decreased. NITRO-DIGE analysis showed significant protein nitrosylation changes for CAT, CA3, SDHA, and VDAC2 in Treatment vs. Placebo. Similarly, the nuclear factor erythroid 2-related factor 2 (Nrf-2) antioxidant response element (Nrf-2 ARE) signaling pathway showed an enhanced response in the Treatment group. Increased nitrosative redox homeostasis and decreased antioxidant defense response were found in post-BR control (Placebo, = 10) vs. the antioxidant cocktail treated group (Treatment, = 10). Taken together, increased nitrosative redox homeostasis and muscle deterioration during BR-driven physical inactivity were prevented, whereas decreased antioxidant nitrosative stress defense response was attenuated by Treatment suggesting positive effects of the nutritional intervention protocol in bedrest.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33802593</pmid><doi>10.3390/antiox10030378</doi><orcidid>https://orcid.org/0000-0002-8917-2962</orcidid><orcidid>https://orcid.org/0000-0003-3214-2233</orcidid><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0003-0355-3340</orcidid><orcidid>https://orcid.org/0000-0002-6230-8663</orcidid><orcidid>https://orcid.org/0000-0002-6374-3325</orcidid><orcidid>https://orcid.org/0000-0002-4718-0307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2021-03, Vol.10 (3), p.378
issn 2076-3921
2076-3921
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7ade64fd53fd4973ab89b41c6cbc1834
source Publicly Available Content Database; PubMed Central
subjects Aerospace medicine
antioxidant systems
Antioxidants
Atrophy
bedrest muscle disuse
Biochemistry, Molecular Biology
Biopsy
Confocal microscopy
Exercise
GA-binding protein
Glycolysis
Homeostasis
Life Sciences
Local anesthesia
Mass spectrometry
Metabolism
Mitochondria
Musculoskeletal system
Myogenesis
Nitrogen
Oxidative phosphorylation
Oxidative stress
Pharmaceutical sciences
Pharmacology
Phosphorylation
Physical fitness
Placebos
Polyphenols
Protein folding
Protein synthesis
Proteins
Reactive nitrogen species
Reactive oxygen species
RNS in cell signaling
Ryanodine receptors
sarcopenia
Scientific imaging
Selenium
Signal transduction
Skeletal muscle
skeletal muscle redox homeostasis
Tricarboxylic acid cycle
Vitamin E
title Nitrosative Redox Homeostasis and Antioxidant Response Defense in Disused Vastus lateralis Muscle in Long-Term Bedrest (Toulouse Cocktail Study)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrosative%20Redox%20Homeostasis%20and%20Antioxidant%20Response%20Defense%20in%20Disused%20Vastus%20lateralis%20Muscle%20in%20Long-Term%20Bedrest%20(Toulouse%20Cocktail%20Study)&rft.jtitle=Antioxidants&rft.au=Blottner,%20Dieter&rft.date=2021-03-03&rft.volume=10&rft.issue=3&rft.spage=378&rft.pages=378-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox10030378&rft_dat=%3Cproquest_doaj_%3E2508561126%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-38a5baa16d437ea7930e12574f64c91ebf3b1b639b3348d05a09ff327870092d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524419280&rft_id=info:pmid/33802593&rfr_iscdi=true