Loading…
Waterborne polyurethanes: influence of chain extender in ftir spectra profiles
Non-polluting systems based on waterborne polyurethanes (wPU) and poly(urethane-urea)s (wPUU) were synthesized employing poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA) and 4,4′-dicyclohexylmethane diisocyanate (HMDI) as monomers. In the formulations, the length and the proportion of t...
Saved in:
Published in: | Central European Journal of Engineering 2012-06, Vol.2 (2), p.231-238 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-polluting systems based on waterborne polyurethanes (wPU) and poly(urethane-urea)s (wPUU) were synthesized employing poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA) and 4,4′-dicyclohexylmethane diisocyanate (HMDI) as monomers. In the formulations, the length and the proportion of the soft segments were varied. Three types of chain extenders were employed: ethylene glycol (EG), producing urethane linkages; and ethylenediamine (EDA) and hydrazine (HYD), forming urea linkages. Cast films obtained from wPU and wPUU, monomers and prepolymers were analyzed by Fourier transform infrared spectrometry (FTIR). The profile of carbonyl absorption bands obtained for the films showed some remarkable differences depending on the formulation. The bands were split into two parts, which were directly related to the tendency of hydrogen bond formation. The length of soft segment, the amount of rigid portions and the presence of urea linkages showed a marked influence in both intensity and frequency absorption of the bands. |
---|---|
ISSN: | 1896-1541 2391-5439 2081-9927 2391-5439 |
DOI: | 10.2478/s13531-011-0060-3 |