Loading…
Broadband THz to NIR up-converter for photon-type THz imaging
High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imagin...
Saved in:
Published in: | Nature communications 2019-08, Vol.10 (1), p.3513-9, Article 3513 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 3513 |
container_title | Nature communications |
container_volume | 10 |
creator | Bai, Peng Zhang, Yueheng Wang, Tianmeng Fu, Zhanglong Shao, Dixiang Li, Ziping Wan, Wenjian Li, Hua Cao, Juncheng Guo, Xuguang Shen, Wenzhong |
description | High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW
−1
. The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10
−2
is realized and the optimal noise equivalent power is 29.1 pWHz
−1/2
. The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.
Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler. |
doi_str_mv | 10.1038/s41467-019-11465-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3</doaj_id><sourcerecordid>2268945515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAkdiwMXj8F3sBElSFXqmiUlXWluPYaa5y42AnlcrT19yU0rLAG49mvjnj8UHoNZD3QJj6kDlwWWMCGkOJBJbP0CElHDDUlD1_FB-g45y3pBymQXH-Eh0wYIopSQ_Rxy8p2raxY1tdnf2q5lh931xWy4RdHG98mn2qQkzVdB3nOOL5dvJ7rt_Zrh-7V-hFsEP2x_f3Efrx9fTq5AyfX3zbnHw-x05wMmPbgPfSa6WdooEICKSmjQUfGAtMKeWoZFArrYIVqlUyBOcVdRo45aWPHaHNqttGuzVTKuPTrYm2N_tETJ2xae7d4E3dAHWCBs6F4IKCkrxRWjpbN5qzlhWtT6vWtDQ73zo_zskOT0SfVsb-2nTxxkipGFBSBN7dC6T4c_F5Nrs-Oz8MdvRxyYZSqXSZDqKgb_9Bt3FJY_mqPVU2riUtFF0pl2LOyYeHxwAxv802q9mmmG32ZhtZmt48XuOh5Y-1BWArkEtp7Hz6O_s_snfbf7Ix</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268789762</pqid></control><display><type>article</type><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</creator><creatorcontrib>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</creatorcontrib><description>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW
−1
. The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10
−2
is realized and the optimal noise equivalent power is 29.1 pWHz
−1/2
. The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.
Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-11465-6</identifier><identifier>PMID: 31383862</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/401 ; 639/766/400/561 ; Arsenides ; Blackbody ; Broadband ; Charge coupled devices ; Gallium ; Gallium arsenide ; Helium ; Homojunctions ; Humanities and Social Sciences ; Imaging ; Incident light ; Inspection ; Light emitting diodes ; Liquid helium ; multidisciplinary ; Nondestructive testing ; Photoelectric emission ; Photons ; Quantum efficiency ; Science ; Science (multidisciplinary) ; Terahertz frequencies ; Up-converters ; Upconversion</subject><ispartof>Nature communications, 2019-08, Vol.10 (1), p.3513-9, Article 3513</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</citedby><cites>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2268789762/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2268789762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31383862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhang, Yueheng</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Li, Ziping</creatorcontrib><creatorcontrib>Wan, Wenjian</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Shen, Wenzhong</creatorcontrib><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW
−1
. The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10
−2
is realized and the optimal noise equivalent power is 29.1 pWHz
−1/2
. The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.
Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</description><subject>639/624/1075/401</subject><subject>639/766/400/561</subject><subject>Arsenides</subject><subject>Blackbody</subject><subject>Broadband</subject><subject>Charge coupled devices</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>Helium</subject><subject>Homojunctions</subject><subject>Humanities and Social Sciences</subject><subject>Imaging</subject><subject>Incident light</subject><subject>Inspection</subject><subject>Light emitting diodes</subject><subject>Liquid helium</subject><subject>multidisciplinary</subject><subject>Nondestructive testing</subject><subject>Photoelectric emission</subject><subject>Photons</subject><subject>Quantum efficiency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Terahertz frequencies</subject><subject>Up-converters</subject><subject>Upconversion</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAkdiwMXj8F3sBElSFXqmiUlXWluPYaa5y42AnlcrT19yU0rLAG49mvjnj8UHoNZD3QJj6kDlwWWMCGkOJBJbP0CElHDDUlD1_FB-g45y3pBymQXH-Eh0wYIopSQ_Rxy8p2raxY1tdnf2q5lh931xWy4RdHG98mn2qQkzVdB3nOOL5dvJ7rt_Zrh-7V-hFsEP2x_f3Efrx9fTq5AyfX3zbnHw-x05wMmPbgPfSa6WdooEICKSmjQUfGAtMKeWoZFArrYIVqlUyBOcVdRo45aWPHaHNqttGuzVTKuPTrYm2N_tETJ2xae7d4E3dAHWCBs6F4IKCkrxRWjpbN5qzlhWtT6vWtDQ73zo_zskOT0SfVsb-2nTxxkipGFBSBN7dC6T4c_F5Nrs-Oz8MdvRxyYZSqXSZDqKgb_9Bt3FJY_mqPVU2riUtFF0pl2LOyYeHxwAxv802q9mmmG32ZhtZmt48XuOh5Y-1BWArkEtp7Hz6O_s_snfbf7Ix</recordid><startdate>20190805</startdate><enddate>20190805</enddate><creator>Bai, Peng</creator><creator>Zhang, Yueheng</creator><creator>Wang, Tianmeng</creator><creator>Fu, Zhanglong</creator><creator>Shao, Dixiang</creator><creator>Li, Ziping</creator><creator>Wan, Wenjian</creator><creator>Li, Hua</creator><creator>Cao, Juncheng</creator><creator>Guo, Xuguang</creator><creator>Shen, Wenzhong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190805</creationdate><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><author>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/401</topic><topic>639/766/400/561</topic><topic>Arsenides</topic><topic>Blackbody</topic><topic>Broadband</topic><topic>Charge coupled devices</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>Helium</topic><topic>Homojunctions</topic><topic>Humanities and Social Sciences</topic><topic>Imaging</topic><topic>Incident light</topic><topic>Inspection</topic><topic>Light emitting diodes</topic><topic>Liquid helium</topic><topic>multidisciplinary</topic><topic>Nondestructive testing</topic><topic>Photoelectric emission</topic><topic>Photons</topic><topic>Quantum efficiency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Terahertz frequencies</topic><topic>Up-converters</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhang, Yueheng</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Li, Ziping</creatorcontrib><creatorcontrib>Wan, Wenjian</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Shen, Wenzhong</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Peng</au><au>Zhang, Yueheng</au><au>Wang, Tianmeng</au><au>Fu, Zhanglong</au><au>Shao, Dixiang</au><au>Li, Ziping</au><au>Wan, Wenjian</au><au>Li, Hua</au><au>Cao, Juncheng</au><au>Guo, Xuguang</au><au>Shen, Wenzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband THz to NIR up-converter for photon-type THz imaging</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-08-05</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>3513</spage><epage>9</epage><pages>3513-9</pages><artnum>3513</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW
−1
. The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10
−2
is realized and the optimal noise equivalent power is 29.1 pWHz
−1/2
. The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.
Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31383862</pmid><doi>10.1038/s41467-019-11465-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-08, Vol.10 (1), p.3513-9, Article 3513 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/401 639/766/400/561 Arsenides Blackbody Broadband Charge coupled devices Gallium Gallium arsenide Helium Homojunctions Humanities and Social Sciences Imaging Incident light Inspection Light emitting diodes Liquid helium multidisciplinary Nondestructive testing Photoelectric emission Photons Quantum efficiency Science Science (multidisciplinary) Terahertz frequencies Up-converters Upconversion |
title | Broadband THz to NIR up-converter for photon-type THz imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20THz%20to%20NIR%20up-converter%20for%20photon-type%20THz%20imaging&rft.jtitle=Nature%20communications&rft.au=Bai,%20Peng&rft.date=2019-08-05&rft.volume=10&rft.issue=1&rft.spage=3513&rft.epage=9&rft.pages=3513-9&rft.artnum=3513&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-11465-6&rft_dat=%3Cproquest_doaj_%3E2268945515%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268789762&rft_id=info:pmid/31383862&rfr_iscdi=true |