Loading…

Broadband THz to NIR up-converter for photon-type THz imaging

High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imagin...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-08, Vol.10 (1), p.3513-9, Article 3513
Main Authors: Bai, Peng, Zhang, Yueheng, Wang, Tianmeng, Fu, Zhanglong, Shao, Dixiang, Li, Ziping, Wan, Wenjian, Li, Hua, Cao, Juncheng, Guo, Xuguang, Shen, Wenzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93
cites cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93
container_end_page 9
container_issue 1
container_start_page 3513
container_title Nature communications
container_volume 10
creator Bai, Peng
Zhang, Yueheng
Wang, Tianmeng
Fu, Zhanglong
Shao, Dixiang
Li, Ziping
Wan, Wenjian
Li, Hua
Cao, Juncheng
Guo, Xuguang
Shen, Wenzhong
description High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW −1 . The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10 −2 is realized and the optimal noise equivalent power is 29.1 pWHz −1/2 . The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band. Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.
doi_str_mv 10.1038/s41467-019-11465-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3</doaj_id><sourcerecordid>2268945515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EolXpC7BAkdiwMXj8F3sBElSFXqmiUlXWluPYaa5y42AnlcrT19yU0rLAG49mvjnj8UHoNZD3QJj6kDlwWWMCGkOJBJbP0CElHDDUlD1_FB-g45y3pBymQXH-Eh0wYIopSQ_Rxy8p2raxY1tdnf2q5lh931xWy4RdHG98mn2qQkzVdB3nOOL5dvJ7rt_Zrh-7V-hFsEP2x_f3Efrx9fTq5AyfX3zbnHw-x05wMmPbgPfSa6WdooEICKSmjQUfGAtMKeWoZFArrYIVqlUyBOcVdRo45aWPHaHNqttGuzVTKuPTrYm2N_tETJ2xae7d4E3dAHWCBs6F4IKCkrxRWjpbN5qzlhWtT6vWtDQ73zo_zskOT0SfVsb-2nTxxkipGFBSBN7dC6T4c_F5Nrs-Oz8MdvRxyYZSqXSZDqKgb_9Bt3FJY_mqPVU2riUtFF0pl2LOyYeHxwAxv802q9mmmG32ZhtZmt48XuOh5Y-1BWArkEtp7Hz6O_s_snfbf7Ix</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268789762</pqid></control><display><type>article</type><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</creator><creatorcontrib>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</creatorcontrib><description>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW −1 . The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10 −2 is realized and the optimal noise equivalent power is 29.1 pWHz −1/2 . The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band. Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-11465-6</identifier><identifier>PMID: 31383862</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/401 ; 639/766/400/561 ; Arsenides ; Blackbody ; Broadband ; Charge coupled devices ; Gallium ; Gallium arsenide ; Helium ; Homojunctions ; Humanities and Social Sciences ; Imaging ; Incident light ; Inspection ; Light emitting diodes ; Liquid helium ; multidisciplinary ; Nondestructive testing ; Photoelectric emission ; Photons ; Quantum efficiency ; Science ; Science (multidisciplinary) ; Terahertz frequencies ; Up-converters ; Upconversion</subject><ispartof>Nature communications, 2019-08, Vol.10 (1), p.3513-9, Article 3513</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</citedby><cites>FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2268789762/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2268789762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31383862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhang, Yueheng</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Li, Ziping</creatorcontrib><creatorcontrib>Wan, Wenjian</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Shen, Wenzhong</creatorcontrib><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW −1 . The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10 −2 is realized and the optimal noise equivalent power is 29.1 pWHz −1/2 . The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band. Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</description><subject>639/624/1075/401</subject><subject>639/766/400/561</subject><subject>Arsenides</subject><subject>Blackbody</subject><subject>Broadband</subject><subject>Charge coupled devices</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>Helium</subject><subject>Homojunctions</subject><subject>Humanities and Social Sciences</subject><subject>Imaging</subject><subject>Incident light</subject><subject>Inspection</subject><subject>Light emitting diodes</subject><subject>Liquid helium</subject><subject>multidisciplinary</subject><subject>Nondestructive testing</subject><subject>Photoelectric emission</subject><subject>Photons</subject><subject>Quantum efficiency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Terahertz frequencies</subject><subject>Up-converters</subject><subject>Upconversion</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhS0EolXpC7BAkdiwMXj8F3sBElSFXqmiUlXWluPYaa5y42AnlcrT19yU0rLAG49mvjnj8UHoNZD3QJj6kDlwWWMCGkOJBJbP0CElHDDUlD1_FB-g45y3pBymQXH-Eh0wYIopSQ_Rxy8p2raxY1tdnf2q5lh931xWy4RdHG98mn2qQkzVdB3nOOL5dvJ7rt_Zrh-7V-hFsEP2x_f3Efrx9fTq5AyfX3zbnHw-x05wMmPbgPfSa6WdooEICKSmjQUfGAtMKeWoZFArrYIVqlUyBOcVdRo45aWPHaHNqttGuzVTKuPTrYm2N_tETJ2xae7d4E3dAHWCBs6F4IKCkrxRWjpbN5qzlhWtT6vWtDQ73zo_zskOT0SfVsb-2nTxxkipGFBSBN7dC6T4c_F5Nrs-Oz8MdvRxyYZSqXSZDqKgb_9Bt3FJY_mqPVU2riUtFF0pl2LOyYeHxwAxv802q9mmmG32ZhtZmt48XuOh5Y-1BWArkEtp7Hz6O_s_snfbf7Ix</recordid><startdate>20190805</startdate><enddate>20190805</enddate><creator>Bai, Peng</creator><creator>Zhang, Yueheng</creator><creator>Wang, Tianmeng</creator><creator>Fu, Zhanglong</creator><creator>Shao, Dixiang</creator><creator>Li, Ziping</creator><creator>Wan, Wenjian</creator><creator>Li, Hua</creator><creator>Cao, Juncheng</creator><creator>Guo, Xuguang</creator><creator>Shen, Wenzhong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190805</creationdate><title>Broadband THz to NIR up-converter for photon-type THz imaging</title><author>Bai, Peng ; Zhang, Yueheng ; Wang, Tianmeng ; Fu, Zhanglong ; Shao, Dixiang ; Li, Ziping ; Wan, Wenjian ; Li, Hua ; Cao, Juncheng ; Guo, Xuguang ; Shen, Wenzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/401</topic><topic>639/766/400/561</topic><topic>Arsenides</topic><topic>Blackbody</topic><topic>Broadband</topic><topic>Charge coupled devices</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>Helium</topic><topic>Homojunctions</topic><topic>Humanities and Social Sciences</topic><topic>Imaging</topic><topic>Incident light</topic><topic>Inspection</topic><topic>Light emitting diodes</topic><topic>Liquid helium</topic><topic>multidisciplinary</topic><topic>Nondestructive testing</topic><topic>Photoelectric emission</topic><topic>Photons</topic><topic>Quantum efficiency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Terahertz frequencies</topic><topic>Up-converters</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhang, Yueheng</creatorcontrib><creatorcontrib>Wang, Tianmeng</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Li, Ziping</creatorcontrib><creatorcontrib>Wan, Wenjian</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Shen, Wenzhong</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Peng</au><au>Zhang, Yueheng</au><au>Wang, Tianmeng</au><au>Fu, Zhanglong</au><au>Shao, Dixiang</au><au>Li, Ziping</au><au>Wan, Wenjian</au><au>Li, Hua</au><au>Cao, Juncheng</au><au>Guo, Xuguang</au><au>Shen, Wenzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband THz to NIR up-converter for photon-type THz imaging</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-08-05</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>3513</spage><epage>9</epage><pages>3513-9</pages><artnum>3513</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW −1 . The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10 −2 is realized and the optimal noise equivalent power is 29.1 pWHz −1/2 . The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band. Designing high performance THz pixelless imaging devices is nowadays challenging due to the inability to obtain normal incidence excitation using a grating coupler. Here, the authors report a broadband GaAs HIWIP-LED THz-NIR up-conversion imaging device avoiding the use of any grating coupler.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31383862</pmid><doi>10.1038/s41467-019-11465-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-08, Vol.10 (1), p.3513-9, Article 3513
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7b12c52f44554521864b896ca7b943d3
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/401
639/766/400/561
Arsenides
Blackbody
Broadband
Charge coupled devices
Gallium
Gallium arsenide
Helium
Homojunctions
Humanities and Social Sciences
Imaging
Incident light
Inspection
Light emitting diodes
Liquid helium
multidisciplinary
Nondestructive testing
Photoelectric emission
Photons
Quantum efficiency
Science
Science (multidisciplinary)
Terahertz frequencies
Up-converters
Upconversion
title Broadband THz to NIR up-converter for photon-type THz imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20THz%20to%20NIR%20up-converter%20for%20photon-type%20THz%20imaging&rft.jtitle=Nature%20communications&rft.au=Bai,%20Peng&rft.date=2019-08-05&rft.volume=10&rft.issue=1&rft.spage=3513&rft.epage=9&rft.pages=3513-9&rft.artnum=3513&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-11465-6&rft_dat=%3Cproquest_doaj_%3E2268945515%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab1ee6e989c82f051f072ba1ef33f3888c26317898fa58d86ffce82c914246e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268789762&rft_id=info:pmid/31383862&rfr_iscdi=true