Loading…
Microengineering of Collagen Hydrogels Integrated into Microfluidic Devices for Perfusion Culture of Mammalian Cells
Collagen-based hydrogels are widely used for three-dimensional (3D) culture of mammalian cells because of their high cell-activating characteristis. However, techniques for preparing of cell-embedding collagen hydrogels with micrometer-size precision in perfusable, microfluidic devices have not been...
Saved in:
Published in: | MATEC web of conferences 2021, Vol.333, p.7006 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collagen-based hydrogels are widely used for three-dimensional (3D) culture of mammalian cells because of their high cell-activating characteristis. However, techniques for preparing of cell-embedding collagen hydrogels with micrometer-size precision in perfusable, microfluidic devices have not been fully developed. In this study, we propose a facile strategy enabling microfabrication of collagen hydrogels in microfluidic devices. We used phosphate particle-embedding polydimethylsiloxane (PP-PDMS) as a gelation agent, which neutralizes the acidic collagen soltuion. The collagen solution near the surface of the PP-PDMS is selectively gelled. We fabricated micropatterns and tubular structures made of collagen hydrogel, both of which were used for perfusion culture of mammalian cells encapsulated in the hydrogel matrix. The presented approach would be applicable to various types of cell culture experiments. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/202133307006 |