Loading…
Detection of Induced GNSS Spoofing Using S-Curve-Bias
In Global Navigation Satellite System (GNSS), a spoofing attack consists of forged signals which possibly cause the attacked receivers to deduce a false position, a false clock, or both. In contrast to simplistic spoofing, the induced spoofing captures the victim tracking loops by gradually adjustin...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-02, Vol.19 (4), p.922 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Global Navigation Satellite System (GNSS), a spoofing attack consists of forged signals which possibly cause the attacked receivers to deduce a false position, a false clock, or both. In contrast to simplistic spoofing, the induced spoofing captures the victim tracking loops by gradually adjusting it's parameters, e.g., code phase and power. Then the victims smoothly deviates from the correct position or timing. Therefore, it is more difficult to detect the induced spoofing than the simplistic one. In this paper, by utilizing the dynamic nature of such gradual adjustment process, an induced spoofing detection method is proposed based on the S-curve-bias (SCB). Firstly, SCB in the inducing process is theoretically derived. Then, in order to detect the induced spoofing, a detection metric is defined. After that, a series of experiments using the Texas spoofing test battery (TEXBAT) are performed to demonstrate the effectiveness of the proposed algorithm. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19040922 |