Loading…

Immunization with CENP-C Causes Aberrant Chromosome Segregation during Oocyte Meiosis in Mice

Anticentromere antibodies (ACA) were associated with lower oocyte maturation rates and cleavage rates, while the mechanism was not clear. Aims of this study were to examine whether active immunization with centromere protein C could elicit the CENP-C autoantibody in mice and the impacts of the CENP-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of immunology research 2021, Vol.2021, p.4610494-9
Main Authors: Fan, Jiao, Liu, Yang, Zhong, Yiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anticentromere antibodies (ACA) were associated with lower oocyte maturation rates and cleavage rates, while the mechanism was not clear. Aims of this study were to examine whether active immunization with centromere protein C could elicit the CENP-C autoantibody in mice and the impacts of the CENP-C autoantibody on oocyte meiosis. Mice were divided into two groups, one was the experimental group immunized with human centromere protein C and Freund’s adjuvant (CFA), and the other was the control group injected with CFA only. Serum and oocytes of BALB/c mice immunized with human centromere protein C (CENP-C) in complete Freund’s adjuvant (CFA) or injected with only CFA were studied for the development of the CENP-C antibody. Rates of germinal vesicle breakdown (GVBD), first polar body (Pb1) extrusion, abnormal spindle morphology, and chromosome misalignment were compared between the experimental group and the control group. The CENP-C antibody was only observed in serum and oocytes of mice immunized with the centromere protein C antigen. The first polar body (Pb1) extrusion rate was lower in the experimental group (P
ISSN:2314-8861
2314-7156
DOI:10.1155/2021/4610494