Loading…
Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent
The antimicrobial effects of silver (Ag) ions and salts are well known. However, the antimicrobial effects, mechanism, and the cytotoxic activity in vitro of Ag nanoparticles (AgNP) has recently been validated. In this work, we report the green synthesis of AgNPs using the extract of Eichhornia cras...
Saved in:
Published in: | Crystals (Basel) 2022-06, Vol.12 (6), p.814 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The antimicrobial effects of silver (Ag) ions and salts are well known. However, the antimicrobial effects, mechanism, and the cytotoxic activity in vitro of Ag nanoparticles (AgNP) has recently been validated. In this work, we report the green synthesis of AgNPs using the extract of Eichhornia crassipes as a reducing agent and evaluate its antimicrobial activity against Escherichia coli (ATCC-25922). The morphology, size, chemical composition, and inhibition properties of the nanoparticles as a function of the reduction time and temperature were analyzed. According to TEM imaging, nanoparticles with average diameters between 20–40 nm were synthesized. Antibacterial results suggest that AgNPs can be used as an effective growth inhibitor with higher antimicrobial activity against Escherichia coli after 120 min of reaction with a synthesis temperature of 95°. More extensive analysis is required for the appropriate selection of the synthesis parameters and adequate concentration for use in biomedical applications and antibacterial control systems. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12060814 |