Loading…

Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries

Lithium (Li) dendrite formation and poor Li+ transport kinetics under high‐charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowal...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2022-10, Vol.9 (30), p.e2203321-n/a
Main Authors: Mu, Yongbiao, Chen, Yuzhu, Wu, Buke, Zhang, Qing, Lin, Meng, Zeng, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113
cites cdi_FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113
container_end_page n/a
container_issue 30
container_start_page e2203321
container_title Advanced science
container_volume 9
creator Mu, Yongbiao
Chen, Yuzhu
Wu, Buke
Zhang, Qing
Lin, Meng
Zeng, Lin
description Lithium (Li) dendrite formation and poor Li+ transport kinetics under high‐charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowalls (VGWs@MCF) as a multifunctional host to efficiently regulate Li deposition and accelerate Li+ transport. A novel electrode for both Li|VGWs@MCF anode and LFP|VGWs@MCF (NCM811|VGWs@MCF) cathode is designed and fabricated using a dual vertically aligned architecture. This unique hierarchical structure provides ultrafast, continuous, and smooth electron transport channels; furthermore, it furnishes outstanding mechanical strength to support massive Li deposition at ultrahigh rates. As a result, the Li|VGWs@MCF anode exhibits outstanding cycling stability at ultrahigh currents and capacities (1000 h at 10 mA cm–2 and 10 mAh cm–2, and 1000 h at 30 mA cm–2 and 60 mAh cm–2). Moreover, full cells made of such 3D anodes and freestanding LFP|VGWs@MCF (NCM811|VGWs@MCF) cathodes with conspicuous mass loading (45 mg cm–2 for LFP and 35 mg cm–2 for NCM811) demonstrate excellent areal capacities (6.98 mAh cm–2 for LFP and 5.6 mAh cm–2 for NCM811). This strategy proposes a promising direction for the development of high‐energy‐density practical Li batteries that combine safety, performance, and sustainability. Homogeneously distributed vertical graphene nanowalls with abundant exposed edges, as a highly conductive coating layer, are successfully fabricated on 3D multichannel carbon framework (VGWs@MCF), which can effectively regulate Li deposition and accelerate Li+ ion transport. The dual vertically aligned architecture electrodes using VGWs@MCF offers significant boost in both ultrahigh rates and capacities (40 mA cm–2 and 40 mAh cm–2) for LMBs.
doi_str_mv 10.1002/advs.202203321
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_7b55707fb24b45f083b39cd9cdf7a17e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7b55707fb24b45f083b39cd9cdf7a17e</doaj_id><sourcerecordid>2706182880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113</originalsourceid><addsrcrecordid>eNqFkctuEzEUQC0EolXbLeuR2LBJ8HNsb5BCWmikqCwK3Vp-TeLIGQd7pig7PoFv5EtwSFVRNpUs-fr63OPHBeANglMEIX6v3X2ZYogxJASjF-AUIykmRFD68p_4BFyUsoEQIkY4ReI1OCFMSkkJPAU3l6OOzZ3PQ7A6xn0zi2HVe9dcRW-HnJz__fPXoi-7kGvyOqzWdT3XO23DsG-WYViHcdt81MPgc_DlHLzqdCz-4mE-A98-XX2dX0-WXz4v5rPlxDLY8onxgneGWY6shpx3kHBsGZHG8s51FrWUdQJTSpBrDSKmBpJroYVgrbMIkTOwOHpd0hu1y2Gr814lHdTfRMorpQ9Pil5xwxiH9ThMTdVCQQyR1tXRcY24r64PR9duNFvvrO-HrOMT6dOdPqzVKt0ryWQriKiCdw-CnL6PvgxqG4r1Merep7EozGGLBBYCVvTtf-gmjbmvX1UpLAiikLWVmh4pm1Mp2XePl0FQHTqvDp1Xj52vBfRY8CNEv3-GVrPLu1tKESd_ABBFsUY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728314056</pqid></control><display><type>article</type><title>Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Mu, Yongbiao ; Chen, Yuzhu ; Wu, Buke ; Zhang, Qing ; Lin, Meng ; Zeng, Lin</creator><creatorcontrib>Mu, Yongbiao ; Chen, Yuzhu ; Wu, Buke ; Zhang, Qing ; Lin, Meng ; Zeng, Lin</creatorcontrib><description>Lithium (Li) dendrite formation and poor Li+ transport kinetics under high‐charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowalls (VGWs@MCF) as a multifunctional host to efficiently regulate Li deposition and accelerate Li+ transport. A novel electrode for both Li|VGWs@MCF anode and LFP|VGWs@MCF (NCM811|VGWs@MCF) cathode is designed and fabricated using a dual vertically aligned architecture. This unique hierarchical structure provides ultrafast, continuous, and smooth electron transport channels; furthermore, it furnishes outstanding mechanical strength to support massive Li deposition at ultrahigh rates. As a result, the Li|VGWs@MCF anode exhibits outstanding cycling stability at ultrahigh currents and capacities (1000 h at 10 mA cm–2 and 10 mAh cm–2, and 1000 h at 30 mA cm–2 and 60 mAh cm–2). Moreover, full cells made of such 3D anodes and freestanding LFP|VGWs@MCF (NCM811|VGWs@MCF) cathodes with conspicuous mass loading (45 mg cm–2 for LFP and 35 mg cm–2 for NCM811) demonstrate excellent areal capacities (6.98 mAh cm–2 for LFP and 5.6 mAh cm–2 for NCM811). This strategy proposes a promising direction for the development of high‐energy‐density practical Li batteries that combine safety, performance, and sustainability. Homogeneously distributed vertical graphene nanowalls with abundant exposed edges, as a highly conductive coating layer, are successfully fabricated on 3D multichannel carbon framework (VGWs@MCF), which can effectively regulate Li deposition and accelerate Li+ ion transport. The dual vertically aligned architecture electrodes using VGWs@MCF offers significant boost in both ultrahigh rates and capacities (40 mA cm–2 and 40 mAh cm–2) for LMBs.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202203321</identifier><identifier>PMID: 35999430</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Batteries ; Carbon ; Chemical vapor deposition ; dual vertically aligned architectures ; Electrodes ; Electrolytes ; Graphene ; lithium metal batteries (LMBs) ; Plating ; ultrahigh currents and capacities ; vertical graphene nanowalls</subject><ispartof>Advanced science, 2022-10, Vol.9 (30), p.e2203321-n/a</ispartof><rights>2022 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113</citedby><cites>FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113</cites><orcidid>0000-0002-0510-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728314056/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728314056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Mu, Yongbiao</creatorcontrib><creatorcontrib>Chen, Yuzhu</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Lin, Meng</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><title>Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries</title><title>Advanced science</title><description>Lithium (Li) dendrite formation and poor Li+ transport kinetics under high‐charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowalls (VGWs@MCF) as a multifunctional host to efficiently regulate Li deposition and accelerate Li+ transport. A novel electrode for both Li|VGWs@MCF anode and LFP|VGWs@MCF (NCM811|VGWs@MCF) cathode is designed and fabricated using a dual vertically aligned architecture. This unique hierarchical structure provides ultrafast, continuous, and smooth electron transport channels; furthermore, it furnishes outstanding mechanical strength to support massive Li deposition at ultrahigh rates. As a result, the Li|VGWs@MCF anode exhibits outstanding cycling stability at ultrahigh currents and capacities (1000 h at 10 mA cm–2 and 10 mAh cm–2, and 1000 h at 30 mA cm–2 and 60 mAh cm–2). Moreover, full cells made of such 3D anodes and freestanding LFP|VGWs@MCF (NCM811|VGWs@MCF) cathodes with conspicuous mass loading (45 mg cm–2 for LFP and 35 mg cm–2 for NCM811) demonstrate excellent areal capacities (6.98 mAh cm–2 for LFP and 5.6 mAh cm–2 for NCM811). This strategy proposes a promising direction for the development of high‐energy‐density practical Li batteries that combine safety, performance, and sustainability. Homogeneously distributed vertical graphene nanowalls with abundant exposed edges, as a highly conductive coating layer, are successfully fabricated on 3D multichannel carbon framework (VGWs@MCF), which can effectively regulate Li deposition and accelerate Li+ ion transport. The dual vertically aligned architecture electrodes using VGWs@MCF offers significant boost in both ultrahigh rates and capacities (40 mA cm–2 and 40 mAh cm–2) for LMBs.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>dual vertically aligned architectures</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>lithium metal batteries (LMBs)</subject><subject>Plating</subject><subject>ultrahigh currents and capacities</subject><subject>vertical graphene nanowalls</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkctuEzEUQC0EolXbLeuR2LBJ8HNsb5BCWmikqCwK3Vp-TeLIGQd7pig7PoFv5EtwSFVRNpUs-fr63OPHBeANglMEIX6v3X2ZYogxJASjF-AUIykmRFD68p_4BFyUsoEQIkY4ReI1OCFMSkkJPAU3l6OOzZ3PQ7A6xn0zi2HVe9dcRW-HnJz__fPXoi-7kGvyOqzWdT3XO23DsG-WYViHcdt81MPgc_DlHLzqdCz-4mE-A98-XX2dX0-WXz4v5rPlxDLY8onxgneGWY6shpx3kHBsGZHG8s51FrWUdQJTSpBrDSKmBpJroYVgrbMIkTOwOHpd0hu1y2Gr814lHdTfRMorpQ9Pil5xwxiH9ThMTdVCQQyR1tXRcY24r64PR9duNFvvrO-HrOMT6dOdPqzVKt0ryWQriKiCdw-CnL6PvgxqG4r1Merep7EozGGLBBYCVvTtf-gmjbmvX1UpLAiikLWVmh4pm1Mp2XePl0FQHTqvDp1Xj52vBfRY8CNEv3-GVrPLu1tKESd_ABBFsUY</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Mu, Yongbiao</creator><creator>Chen, Yuzhu</creator><creator>Wu, Buke</creator><creator>Zhang, Qing</creator><creator>Lin, Meng</creator><creator>Zeng, Lin</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0510-1754</orcidid></search><sort><creationdate>20221001</creationdate><title>Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries</title><author>Mu, Yongbiao ; Chen, Yuzhu ; Wu, Buke ; Zhang, Qing ; Lin, Meng ; Zeng, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>dual vertically aligned architectures</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>lithium metal batteries (LMBs)</topic><topic>Plating</topic><topic>ultrahigh currents and capacities</topic><topic>vertical graphene nanowalls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Yongbiao</creatorcontrib><creatorcontrib>Chen, Yuzhu</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Lin, Meng</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Yongbiao</au><au>Chen, Yuzhu</au><au>Wu, Buke</au><au>Zhang, Qing</au><au>Lin, Meng</au><au>Zeng, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries</atitle><jtitle>Advanced science</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>9</volume><issue>30</issue><spage>e2203321</spage><epage>n/a</epage><pages>e2203321-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Lithium (Li) dendrite formation and poor Li+ transport kinetics under high‐charging current densities and capacities inhibit the capabilities of Li metal batteries (LMBs). This study proposes a 3D conductive multichannel carbon framework (MCF) with homogeneously distributed vertical graphene nanowalls (VGWs@MCF) as a multifunctional host to efficiently regulate Li deposition and accelerate Li+ transport. A novel electrode for both Li|VGWs@MCF anode and LFP|VGWs@MCF (NCM811|VGWs@MCF) cathode is designed and fabricated using a dual vertically aligned architecture. This unique hierarchical structure provides ultrafast, continuous, and smooth electron transport channels; furthermore, it furnishes outstanding mechanical strength to support massive Li deposition at ultrahigh rates. As a result, the Li|VGWs@MCF anode exhibits outstanding cycling stability at ultrahigh currents and capacities (1000 h at 10 mA cm–2 and 10 mAh cm–2, and 1000 h at 30 mA cm–2 and 60 mAh cm–2). Moreover, full cells made of such 3D anodes and freestanding LFP|VGWs@MCF (NCM811|VGWs@MCF) cathodes with conspicuous mass loading (45 mg cm–2 for LFP and 35 mg cm–2 for NCM811) demonstrate excellent areal capacities (6.98 mAh cm–2 for LFP and 5.6 mAh cm–2 for NCM811). This strategy proposes a promising direction for the development of high‐energy‐density practical Li batteries that combine safety, performance, and sustainability. Homogeneously distributed vertical graphene nanowalls with abundant exposed edges, as a highly conductive coating layer, are successfully fabricated on 3D multichannel carbon framework (VGWs@MCF), which can effectively regulate Li deposition and accelerate Li+ ion transport. The dual vertically aligned architecture electrodes using VGWs@MCF offers significant boost in both ultrahigh rates and capacities (40 mA cm–2 and 40 mAh cm–2) for LMBs.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35999430</pmid><doi>10.1002/advs.202203321</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0510-1754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2022-10, Vol.9 (30), p.e2203321-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_7b55707fb24b45f083b39cd9cdf7a17e
source PubMed (Medline); Publicly Available Content Database; Wiley Open Access
subjects Batteries
Carbon
Chemical vapor deposition
dual vertically aligned architectures
Electrodes
Electrolytes
Graphene
lithium metal batteries (LMBs)
Plating
ultrahigh currents and capacities
vertical graphene nanowalls
title Dual Vertically Aligned Electrode‐Inspired High‐Capacity Lithium Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Vertically%20Aligned%20Electrode%E2%80%90Inspired%20High%E2%80%90Capacity%20Lithium%20Batteries&rft.jtitle=Advanced%20science&rft.au=Mu,%20Yongbiao&rft.date=2022-10-01&rft.volume=9&rft.issue=30&rft.spage=e2203321&rft.epage=n/a&rft.pages=e2203321-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202203321&rft_dat=%3Cproquest_doaj_%3E2706182880%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5067-be87fb5c71ca077f0372c539bc7fdfc1645f824431d6b13b43197a8a8856dc113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728314056&rft_id=info:pmid/35999430&rfr_iscdi=true