Loading…
GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson’s disease
Parkinson’s disease (PD) is a disabling neurodegenerative disorder in which multiple cell types, including dopaminergic and cholinergic neurons, are affected. The mechanisms of neurodegeneration in PD are not fully understood, limiting the development of therapies directed at disease-relevant molecu...
Saved in:
Published in: | Scientific reports 2022-02, Vol.12 (1), p.3268-3268, Article 3268 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parkinson’s disease (PD) is a disabling neurodegenerative disorder in which multiple cell types, including dopaminergic and cholinergic neurons, are affected. The mechanisms of neurodegeneration in PD are not fully understood, limiting the development of therapies directed at disease-relevant molecular targets.
C. elegans
is a genetically tractable model system that can be used to disentangle disease mechanisms in complex diseases such as PD. Such mechanisms can be studied combining high-throughput molecular profiling technologies such as transcriptomics and metabolomics. However, the integrative analysis of multi-omics data in order to unravel disease mechanisms is a challenging task without advanced bioinformatics training. Galaxy, a widely-used resource for enabling bioinformatics analysis by the broad scientific community, has poor representation of multi-omics integration pipelines. We present the integrative analysis of gene expression and metabolite levels of a
C. elegans
PD model using GAIT-GM, a new Galaxy tool for multi-omics data analysis. Using GAIT-GM, we discovered an association between branched-chain amino acid metabolism and cholinergic neurons in the
C. elegans
PD model. An independent follow-up experiment uncovered cholinergic neurodegeneration in the
C. elegans
model that is consistent with cholinergic cell loss observed in PD. GAIT-GM is an easy to use Galaxy-based tool for generating novel testable hypotheses of disease mechanisms involving gene-metabolite relationships. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-07238-9 |