Loading…

Effects of dietary rumen-protected choline supplementation to periparturient dairy cattle on inflammation, metabolism, and performance during an intramammary lipopolysaccharide challenge

Recent studies have suggested that dietary rumen-protected choline (RPC) supplementation can modulate immune function, attenuate inflammation, and improve performance in periparturient dairy cattle; however, this has yet to be evaluated during a mastitis challenge. Therefore, the objective of this s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2023-12, Vol.106 (12), p.8561-8582
Main Authors: Swartz, T.H., Bradford, B.J., Mamedova, L.K., Estes, K.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have suggested that dietary rumen-protected choline (RPC) supplementation can modulate immune function, attenuate inflammation, and improve performance in periparturient dairy cattle; however, this has yet to be evaluated during a mastitis challenge. Therefore, the objective of this study was to examine the effects of supplementation and dose of RPC on metabolism, inflammation, and performance during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows (parity, mean ± SD, 1.9 ± 1.1 at enrollment) were blocked by calving month and randomly assigned within block to receive either 45 g/d of RPC (20.4 g/d of choline ions; CHOL45, n = 18), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30, n = 21), or no RPC (CON, n = 19) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 μg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM. Before the challenge, CHOL45 and CHOL30 cows produced 3.4 and 3.8 (±1.2 SED) kg/d more milk than CON, respectively. Dietary RPC supplementation did not mitigate the milk loss associated with the intramammary LPS challenge; however, CHOL45 and CHOL30 cows produced 3.1 and 3.5 (±1.4 SED) kg/d more milk than CON, respectively in the carryover period (22 to 84 DIM). Dietary RPC supplementation enhanced plasma β-hydroxybutyrate (BHB) concentrations before the LPS challenge, and increased plasma nonesterified fatty acids (NEFA) and acetylcarnitine concentrations during the LPS challenge, potentially reflecting greater adipose tissue mobilization, fatty acid transport and oxidation. Aside from trimethylamine N-oxide and sarcosine, which were increased in CHOL45-LPS as compared with CON-LPS, most other choline metabolite concentrations in plasma were unaffected by treatment, likely because more choline was being secreted in milk. Plasma lactic acid concentrations were decreased in CHOL45-LPS and CHOL30-LPS as compared with CON-LPS, suggesting a reduction in glycolysis or an enhancement in the flux through the lactic acid cycle to support gluconeogenesis. Plasma concentrations of fumaric acid, a byproduct of AA catabolism and the urea cycle, were increased in both choline groups as compared with CON-LPS during the LPS challenge. Cows in the CHOL45 group had greater plasma antioxidant potential before the LPS challenge and reduced plasma methionine sulfoxide concentrations
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2023-23259