Loading…
Lightweight AI Framework for Industry 4.0 Case Study: Water Meter Recognition
The evolution of applications in telecommunication, network, computing, and embedded systems has led to the emergence of the Internet of Things and Artificial Intelligence. The combination of these technologies enabled improving productivity by optimizing consumption and facilitating access to real-...
Saved in:
Published in: | Big data and cognitive computing 2022-09, Vol.6 (3), p.72 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The evolution of applications in telecommunication, network, computing, and embedded systems has led to the emergence of the Internet of Things and Artificial Intelligence. The combination of these technologies enabled improving productivity by optimizing consumption and facilitating access to real-time information. In this work, there is a focus on Industry 4.0 and Smart City paradigms and a proposal of a new approach to monitor and track water consumption using an OCR, as well as the artificial intelligence algorithm and, in particular the YoLo 4 machine learning model. The goal of this work is to provide optimized results in real time. The recognition rate obtained with the proposed algorithms is around 98%. |
---|---|
ISSN: | 2504-2289 2504-2289 |
DOI: | 10.3390/bdcc6030072 |