Loading…
Multilayered Equivalent Finite Element Method for Embedded Honeycomb Plates
To investigate the mechanical properties of embedded honeycomb plates with high efficiency and accuracy, a new multilayered equivalent finite element method (FEM) model is proposed. A series of FEM numerical studies (modal analysis, static analysis, and shock spectrum analysis) are performed. The go...
Saved in:
Published in: | Shock and vibration 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the mechanical properties of embedded honeycomb plates with high efficiency and accuracy, a new multilayered equivalent finite element method (FEM) model is proposed. A series of FEM numerical studies (modal analysis, static analysis, and shock spectrum analysis) are performed. The goal is to compare the errors produced by the multilayered equivalent method and by existing equivalent approaches. The obtained results indicate that the proposed model shows good agreement with the original plate. Moreover, based on the new model, a parametric study correlating the microstructure parameters (embedded depth/cell size) to modal frequency is proposed, and a multiparameter equation for frequency and embedded depth/cell size is established to serve as a basis for structural optimization design. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2018/5914137 |