Loading…
Defining a therapeutic range for regeneration of ischemic myocardium via shock waves
Shockwave therapy (SWT) represents a promising regenerative treatment option for patients with ischemic cardiomyopathy. Although no side-effects have been described upon SWT, potential cellular damage at therapeutic energies has not been addressed so far. In this work, we aimed to define a therapeut...
Saved in:
Published in: | Scientific reports 2021-01, Vol.11 (1), p.409-409, Article 409 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Shockwave therapy (SWT) represents a promising regenerative treatment option for patients with ischemic cardiomyopathy. Although no side-effects have been described upon SWT, potential cellular damage at therapeutic energies has not been addressed so far. In this work, we aimed to define a therapeutic range for shock wave application for myocardial regeneration. We could demonstrate that SWT does not induce cellular damage beneath energy levels of 0.27 mJ/mm
2
total flux density. Endothelial cell proliferation, angiogenic gene expression and phosphorylation of AKT and ERK are enhanced in a dose dependent manner until 0.15 mJ/mm
2
energy flux density. SWT induces regeneration of ischemic muscle in vivo via expression of angiogenic gene expression, enhanced neovascularization and improved limb perfusion in a dose-dependent manner. Therefore, we provide evidence for a dose-dependent induction of angiogenesis after SWT, as well as the absence of cellular damage upon SWT within the therapeutic range. These data define for the first time a therapeutic range of SWT, a promising regenerative treatment option for ischemic cardiomyopathy. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-79776-z |