Loading…

Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation

Fertilizer management is one of the easiest and most practical ways of combating salt stress. This study was done to evaluate the alleviative effects of nitrogen and phosphorus on the growth and salt tolerance of salt-affected sorghum. A controlled study organized in a randomized block design with t...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2023-04, Vol.13 (4), p.1020
Main Authors: Guo, Xiaoqian, Wu, Qidi, Zhang, Zhe, Zhu, Guanglong, Zhou, Guisheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fertilizer management is one of the easiest and most practical ways of combating salt stress. This study was done to evaluate the alleviative effects of nitrogen and phosphorus on the growth and salt tolerance of salt-affected sorghum. A controlled study organized in a randomized block design with three replications was conducted, testing three nitrogen rates (N0: 0 kg ha−1, N1: 180 kg ha−1, N2: 360 N kg ha−1) and phosphorus rates (P0: 0 P2O5 kg ha−1, P1: 60 P2O5 kg ha−1, P2: 120 P2O5 kg ha−1). Nitrogen and phosphorus application had positive effects on morphological indexes (plant height, stem diameter), some physiological and biochemical attributes (the content of proline and soluble protein, and the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase), and aerial biomass (fresh and dry weight) of sorghum grown in saline soils. Reactive oxygen species accumulation and cell membrane damage were decreased with the application of nitrogen and phosphorus. Compared with sole fertilizer, the combined application of nitrogen and phosphorus showed better performance in alleviating salt damage on sorghum. Despite the fact that the maximum of most of the measured parameters and the minimum of reactive oxygen species accumulation and cell membrane damage were generally obtained at N1P1 and N2P2 treatment, N1P1 was recommended to be the suitable treatment considering economic benefits and environmental protection.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13041020