Loading…

Study of Solid Particle Erosion on Helicopter Rotor Blades Surfaces

In this study, titanium alloy (Ti-4Al-1.5Mn), magnesium alloy (Mg-Li9-A3-Zn3), or aluminum alloy (Al7075-T6) were used to construct the shell model of helicopter rotor blade to study the solid particle erosion of helicopter rotor blades. The erosion resistance of the three materials at different ang...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-02, Vol.10 (3), p.977
Main Authors: Bai, Xupeng, Yao, Yongming, Han, Zhiwu, Zhang, Junqiu, Zhang, Shuaijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, titanium alloy (Ti-4Al-1.5Mn), magnesium alloy (Mg-Li9-A3-Zn3), or aluminum alloy (Al7075-T6) were used to construct the shell model of helicopter rotor blade to study the solid particle erosion of helicopter rotor blades. The erosion resistance of the three materials at different angles of attack (6°, 3°, or 0°) and particle collision speeds (70, 150, or 220 m/s) was examined using the finite volume method, the discrete phase method, and erosion models. In addition, the leading edge of the helicopter blades was coated with two types of bionic anti-erosion coating layers (V- and VC-type), in an attempt to improve erosion resistance at the angles of attack and particle collision speeds given above. The results showed that Ti-4Al-1.5Mn had the best erosion resistance at high speed, followed by Al7075-T6 and Mg-Li9-A3-Zn3. The angle of attack appeared to affect only the surface area of the blade erosion, while the erosion rate was not affected. Finally, the results of this article showed that the V-type bionic coating had better erosion resistance than the VC-type coating at the same impact speeds. The angle of attack did not have a significant effect on the erosion rate of the bionic coating.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10030977